Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của BM với AC; CM với AD lần lượt là D và E
Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó;ΔEBC=ΔDCB
Suy ra: \(\widehat{MCB}=\widehat{MBC}\)
hay ΔMBC cân tại M
=>\(\widehat{MBC}=\dfrac{180^0-140^0}{2}=20^0\)
=>\(\widehat{ACB}=\widehat{ABC}=70^0\)
hay \(\widehat{BAC}=40^0\)
Để tính góc AMB, ta cần tính ∠A1, ∠B1
Trong tam giác vuông AHB có ∠A1= 90o − ∠(ABH) = 90o − 67 o = 23 o
Trong tam giác vuông AKB có ∠B1= 90o − ∠(BAK) = 90 o − 55o = 35o
Vậy trong tam giác AMB có
∠(AMB) = 180o − (∠A1+ ∠B1) = 180o − (23o + 35o) = 122o.
A B C M A1 B1
b,
Trong \(\Delta\) AMB có:
\(\widehat{BAM}+\widehat{AMB}+\widehat{MBA}=180^0\)
\(\Rightarrow\widehat{BAM}+\widehat{ABM}=44^0\)
Hay \(\dfrac{1}{2}\left(\widehat{BAC}+\widehat{ABC}\right)=44^0\)
=> \(\widehat{BAC}+\widehat{ABC}=88^0\)
Trong \(\Delta ABC\) có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\Rightarrow\widehat{ACB}=92^0\)
Ta lại có: hai đường phân giác \(\text{AA}_1\) và \(BB_1\) cắt nhau tại M => M là giao của 3 đường phân giác
=> CM là phân của của \(\widehat{C}\)
=> \(\widehat{BCM}=\widehat{MCA}=\dfrac{1}{2}\widehat{C}=\dfrac{1}{2}.92^0=46^0\)
b,
Tương tự câu a, ta tìm được:
\(\widehat{ACM}=\widehat{BCM}=21^0\)
em gửi bài qua fb thầy HD cho, tìm fb của thầy bằng sđt: 0975705122, ở đây thầy không vẽ hình được
a ) Xét \(\Delta\)ABM và \(\Delta\)ACM có :
- AB = AC ( \(\Delta\)ABC cân tại A )
- AM : cạnh chung
- BÂM = CÂM ( vì AM là phân giác của BÂC )
\(\Rightarrow\)\(\Delta\)ABM = \(\Delta\)ACM ( c - g - c )
b ) Xét \(\Delta\)AHM và \(\Delta\)AKM có :
- AM : cạnh chung
- Góc AHM = Góc AKM ( = 90° )
- HÂM = KÂM ( vì AM là phân giác của BÂC )
\(\Rightarrow\)\(\Delta\)AHM = \(\Delta\)AKM ( cạnh huyền - góc nhọn )
\(\Rightarrow\)AH = AK ( 2 cạnh tương ứng )
c ) Gọi O là giao điểm của AM và HK
Xét \(\Delta\)AOH và \(\Delta\)AOK có :
- AO : cạnh chung
- AH = AK ( cmt )
- HÂO = KÂO ( vì AM là phân giác của BÂC )
\(\Rightarrow\)\(\Delta\)AOH = \(\Delta\)AOK ( c - g - c )
\(\Rightarrow\)AÔH = AÔK ( 2 góc tương ứng )
Mà AÔH + AÔK = 180° ( kề bù )
\(\Rightarrow\)AÔH = ÔK = 180° / 2 = 90°
Hay AM \(\perp\)HK
\(\widehat{MBA}=90^0-55^0=35^0\)
\(\widehat{MAB}=90^0-67^0=23^0\)
Do đó: \(\widehat{AMB}=122^0\)