K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2016

Tích đi rồi mình trả lời

7 tháng 3 2016

goi goc BAH,MAH,MAC là A1, A2 ,A3 ta co

B+A1 = 90 mà A1=A2=A3

nen BAC=90

lam k met viet met qua

a: Ta có: \(\sin\widehat{B}=\dfrac{1}{3}\)

nên \(\dfrac{AC}{BC}=\dfrac{1}{3}\)

hay BC=3AC

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow8\cdot AC^2=16\)

\(\Leftrightarrow AC=\sqrt{2}cm\)

\(\Leftrightarrow BC=3\sqrt{2}cm\)

\(\Leftrightarrow AH=\dfrac{4\sqrt{2}}{3\sqrt{2}}=\dfrac{4}{3}cm\)

b: \(\cos\widehat{MAH}=\dfrac{AH}{AM}=\dfrac{4}{3}:\dfrac{3\sqrt{2}}{2}=\dfrac{4}{3}\cdot\dfrac{2}{3\sqrt{2}}=\dfrac{8\sqrt{2}}{18}=\dfrac{4\sqrt{2}}{9}\)

a: Ta có: \(\sin\widehat{B}=\dfrac{1}{3}\)

nên \(\dfrac{AC}{BC}=\dfrac{1}{3}\)

hay BC=3AC

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\left(3\cdot AC\right)^2-AC^2=4^2=16\)

\(\Leftrightarrow8\cdot AC^2=16\)

\(\Leftrightarrow AC^2=2\)

\(\Leftrightarrow AC=\sqrt{2}\left(cm\right)\)

\(\Leftrightarrow BC=3\sqrt{2}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{4\cdot\sqrt{2}}{3\sqrt{2}}=\dfrac{4}{3}\left(cm\right)\)

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên \(AM=\dfrac{BC}{2}=\dfrac{3\sqrt{2}}{2}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHM vuông tại H, ta được:

\(AM^2=AH^2+HM^2\)

\(\Leftrightarrow HM^2=\left(\dfrac{3\sqrt{2}}{2}\right)^2-\left(\dfrac{4}{3}\right)^2=\dfrac{49}{18}\)

hay \(HM=\dfrac{7\sqrt{2}}{6}\left(cm\right)\)

Xét ΔMAH vuông tại H có 

\(\cos\widehat{MAH}=\dfrac{HM}{AM}\)

\(=\dfrac{7\sqrt{2}}{6}:\dfrac{3\sqrt{2}}{2}=\dfrac{7}{9}\)

:< giải hộ mình với ~