K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2016

A B C I E D x

a) Vì AB // Cx nên góc ABC = BCE ( so le trong )

Xét ΔDBI và ΔECI có:

DB = EC (GT)

ABC = BCE ( chứng minh trên )

BI = CI (suy từ gt)

=> ΔDBI = ΔECI (c.g.c)

b) Do AB = AC nên ΔABC cân tại A

đc góc ABC = ACB (1)

mà AB // Cx => góc ABC = BCE (so le trong) (2)

Từ (1) và (2) suy ra ACB = BCE

Do đó CB là tia pg của góc ACE

c) Lại do ΔDBI = ΔECI nên góc BID = CIE (2 góc tương ứng)

mà 2 góc này đối nhau nên D, I, E thẳng hàng → đpcm

Chúc học tốt Tam Nguyen Thanh hihi

22 tháng 12 2016

thank you bạn nhìu nhé

Bài 1:Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EMa) Chứng minh ( CM ) : tam giác ABM = tam giác ACMb) CM : AM vuông góc BCc) CM : tam giác AEH = tam giác CEMd) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm...
Đọc tiếp

Bài 1:

Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EM

a) Chứng minh ( CM ) : tam giác ABM = tam giác ACM

b) CM : AM vuông góc BC

c) CM : tam giác AEH = tam giác CEM

d) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm H, A, K thẳng hàng

 

Bài 2:

Cho tam giác ABC có góc B < 90 độ. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ tia Bx khác BC, trên tia Bx lấy điểm D sao cho BD = BC. Trên nửa mặt phẳng bờ AB chứa điểm C vẽ tia By vuông góc với BA, trên tia By lấy E sao cho BE = BA

a) CMR : DA = EC

b) DA vuông góc EC

 

Bài 3:

Cho tam giác ABC vuông tại B và AC = 2AB. Kẻ phân giác AE ( E thuộc BC ) của góc A

a) CM : EA = EC

b) Tính góc A và góc C của tam giác ABC

 

GIÚP TỚ VỚI Ạ. TỚ ĐANG CẦN!!

4
6 tháng 1 2018

Bài 1:

K D A H E B M C

a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A

=> đường trung tuyến AM đồng thời là đường cao

Vậy AM vuông góc BC

c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)

\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)

d) Ta có KB//AM(vì vuông góc với BM 

\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)

Xét tam giác KDB và MDA (2 góc đối đỉnh)

\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)

\(\Rightarrow KD=DM\left(1\right)\)

Tam giác ABM vuông tại M có trung tuyến MD 

Nên : MD=BD=AD(2)

Từ (1) và (2) ta có : KD=DM=DB=AD

Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)

Nên : Tam giác KAM vuông tại A

Tương tự : Tam giác MAH vuông tại A

Ta có: Qua1 điểm A thuộc AM  có 2 đường KA và AH cùng vuông góc với AM 

Nên : K,A,H thẳng thàng

6 tháng 1 2018

Bài 2 : 

x D A B C E y

a) Ta có tam giác DAB=tam giác CEB(c.g.c)

Do : DA=CB(gt)

       BE=BA(gt)

       \(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))

=> DA=EC

b) Do tam giác DAB=tam giác CEB(ở câu a) 

=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)

Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC) 

=> \(\widehat{BCE}+\widehat{BCD}=90^0\)

=> DA vuông góc với EC

9 tháng 1 2017

hình bạn tự vẽ nhé

xét tam giác BID và tam giác CIE có

    BI = IC

    góc DBI = góc ECI (so le trong)

   \(\widehat{DIB}=\widehat{EIC}\)ĐỐI ĐỈNH

 suy ra tam giác BID = tam giác CIE (g.c.g)

  suy ra BD = CE ( 2 cạnh tương ứng )

 b)  ta có \(\widehat{ABC}=\widehat{ACB},\widehat{ABC}=\widehat{xCB}\Rightarrow\widehat{ACB}=\widehat{xCB}\)

mà tia CB nằm giữa 2 tia CA và Cx nên CB là phân giác góc ACx

chúc bạn học giỏi

16 tháng 2 2017

Ví  von hay lắm man

9 tháng 12 2019

 ko biết

2 tháng 8 2017

mong mn giải nhanh giúp mk xin cảm ơn

11 tháng 11 2018

Bạn tự vẽ hình nhé

a) Xét \(\Delta ABD\)\(\Delta ACD\)có:

AB = AC ( gt)

\(\widehat{BAD}=\widehat{CAD}\)(gt)

AD chung

\(\Rightarrow\)\(\Delta ABD=\Delta ACD\left(c.g.c\right)\)

9 tháng 12 2018

a) Ta có: góc ^ADC=180* -(^CAD+^C)

^BDA=180*-(^BAD+^B)

mà ^CAD=^BAD(giả thiết)

^C=^B(giả thiết)

--> ^ADC=^BDA

lại có:

^CAD=^BAD(gt)

AD chung

--> tam giác ABD=tam giác ACD