Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Từ A kẻ AE//BD cắt đường thẳng CB tại E
=> ^BAE=^DBA=^B/2=60* và ^ABE=60* (kề bù với ^B)
=> ∆ABE đều nên AB=BE=AE=6
Do BD//AE suy ra: BD/AE=CB/CE
mà CE=CB+BE=12+6=18cm
ta có BD/6=12/18 suy ra BD=12.6/18=4 (cm)
b) Xét ∆ABM có AB=BM =6cm (do BM=MC=BC/2)
nên ∆ABM cân tại B mà BD là đường phân giác nên cũng là đường cao
do đó BD vuông góc với AM.
a) Ta có:
ˆABD=ˆCBD=ˆABC2=120∘2=60∘ABD^=CBD^=ABC^2=120∘2=60∘
Từ A kẻ đường thẳng song song với BD cắt CD tại E.
Lại có:
ˆBAE=ˆABD=60∘BAE^=ABD^=60∘ (so le trong)
ˆCBD=ˆAEB=60∘CBD^=AEB^=60∘ (đồng vị)
Suy ra tam giác ABE đều
⇒AB=BE=EA=6(cm)(1)⇒AB=BE=EA=6(cm)(1)
Khi đó: CE = BC + BE = 12 + 6 = 18 (cm)
Tam giác ACE có AE // BD nên suy ra:
BCCE=BDAE⇒BD=BC.AECE=12.618=4(cm)
b) Ta có:
MB=MC=12.BC=12.12=6(cm)(2)MB=MC=12.BC=12.12=6(cm)(2)
Từ (1) và (2) suy ra:
BM=AB⇒BM=AB⇒ ∆ABM cân tại B.
Tam giác cân ABM có BD là đường phân giác nên đồng thời nó cũng là đường cao (tính chất tam giác cân). Vậy BD⊥AM
Xét tam giác : ADO = AEO ( c-g-c ) => ADO = AEO => tam giác MDO = NOE => MO = ON
BO = CO ( khỏi xét )
=> MB = NC
A B C E a b c
Kẻ CE | AB.
Ta có \(\Delta ACE\) vuông tại E có góc A = 60o.
\(\Rightarrow AE=\frac{1}{2}AC=\frac{b}{2}\)
\(CE=AC^2-AE^2=\frac{\sqrt{3}}{2}b\)
Xét \(\Delta EBC\) vuông tại E có :
\(EB=c+\frac{b}{2}\)
\(EC=\frac{\sqrt{3}}{2}b\)
\(\Rightarrow a^2=BC^2=EB^2+EC^2=\left(c+\frac{b}{2}\right)^2+\left(\frac{\sqrt{3}}{2}b\right)^2=b^2+c^2+bc\)
Vậy ...
- Vẽ CD vuông góc tia AB tại D.
Ta thấy: \(\widehat{BAC}=120^o\Rightarrow\widehat{CAD}=60^o\left(p.g\right)\)
Tam giác CAD là nửa tam giác đều
\(\Rightarrow AD=\frac{1}{2}AC=\frac{1}{2}AB\)
- Tam giác CDB vuông tại D
\(\Rightarrow BC^2=BD^2+CD^2=BD^2+CD^2...\Rightarrow a^2=\left(AB+AD\right)^2+\left(AC-AD\right)^2\)
\(\Rightarrow AB^2+2AB.BD+AD^2+AC^2-AD^2\Rightarrow a^2=b^2+c^2+2c.AD=b^2+c^2+bc\left(AD=\frac{1}{2}b\right)\)