K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2016

Bố Nam gấp 3 lần tuổi Nam là tính theo năm, nhưng ngoài ra còn có trường hợp tháng tuổi. Và trường hợp cần tìm là 1 gia đình có ông (bà) 60 tuổi và cháu tròn 1 tháng tuổi, bởi 60 năm = 720 tháng. Do vậy thỏa mãn điều kiện đề bài: Hai người cùng nhà có số tuổi gấp 720 lần nhau"

8 tháng 9 2017

Giải:

Gọi Cy là tia đối của tia CB. Dựng DH, DI, DK lần

lượt vuông góc với BC. AC, AB. Từ giả thiết ta suy

ra DI = DK; DK = DH nên suy ra DI = DH ( CI

nằm trên tia CA vì nếu điểm I thuộc tia đối của CA

thì DI > DH). Vậy CD là tia phân giác của ICy và ICy  là góc ngoài của tam giâc ABC suy ra

\(ACD=DCy=\frac{A+B}{2}=\frac{30^0+130^0}{2}=80^0\)

Mặt khác CAE=1800-1300=50. Do đó, CAE=500 nên tam giác CAE cân tại C

\(\Rightarrow CA=CE\)

9 tháng 3 2019

B K E A C I H y

Gọi Cy là tia đối của tia CB.Dựng DH,DI,DK lần lượt vuông góc với BC,AC,AB.

Ta có:AD là cạnh chung,^IAD=^DAK => \(\Delta ADI=\Delta ADK\left(ch-gn\right)\Rightarrow DI=DK\left(1\right)\)

Lại có:BD là cạnh chung,^HBD=^KBD => \(\Delta BDH=\Delta BDK\left(ch-gn\right)\Rightarrow DH=DK\left(2\right)\)

Từ (1),(2) suy ra \(DI=DH\)

Do ^IBD và ^IAD là 2 tia phân giác cắt nhau tại D nên ^ACD là phân giác ngoài của \(\Delta\)BAI.

Mặt khác DI=DH,CD là cạnh chung => \(\Delta CDI=\Delta CDH\left(ch-cgv\right)\Rightarrow CD\) là tia phân giác ^DIH.

Ta có:\(\widehat{ICH}=\widehat{ABC}+\widehat{BAC}=30^0+130^0=160^0\)

\(\Rightarrow\widehat{ECI}=\frac{160^0}{2}=80^0\)

\(\widehat{CAE}=180^0-130^0=50^0\left(3\right)\)

Xét  \(\Delta CAE\) có:\(\widehat{CEA}=180^0-\widehat{ACE}-\widehat{CAE}=180^0-50^0-80^0=50^0\left(4\right)\)

Từ (3),(4) suy ra \(\widehat{CAE}=\widehat{CEA}\Rightarrow\Delta CAE\) cân tại E 

\(\Rightarrow AC=CE\left(đpcm\right)\)

Bài 2:

Kẻ OF//BC(F thuộc AC)

=>OF//DE//BC

DE//BC

=>góc DEA=góc ACB

=>góc DEO=1/2*góc ACB

ED//OF
=>góc DEA=góc CFD và góc DEO=góc EOF

=>góc EOF=1/2*góc ACB

=>góc DEO=góc EOF

OF//BC

=>góc FOB=góc OBC=1/2góc ABC

góc BOE=góc BOF+góc EOF

=1/2(góc ABC+góc ACB)

a:

ΔABC vuông tại A nên BC là cạnh lớn nhất

=>AC<BC

mà AB<AC

nên AB<AC<BC

Xét ΔABC có AB<AC<BC

mà \(\widehat{C};\widehat{B};\widehat{BAC}\) lần lượt là góc đối diện của các cạnh AB,AC,BC

nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)

b: Ta có: \(\widehat{ABI}=\widehat{CBI}=\dfrac{\widehat{ABC}}{2}\)

\(\widehat{ACI}=\widehat{BCI}=\dfrac{\widehat{ACB}}{2}\)

mà \(\widehat{ACB}< \widehat{ACB}\)

nên \(\widehat{ICB}< \widehat{IBC}\)

Xét ΔIBC có \(\widehat{ICB}< \widehat{IBC}\)

mà IB,IC lần lượt là cạnh đối diện của các góc ICB và góc IBC

nên IB<IC

21 tháng 1 2024

câu c của tôi đâu

 

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1
1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm...
Đọc tiếp

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.

2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.

3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.

4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.

5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.

0
3 tháng 5 2019

tam giác ABC vuông tại A (gt)

=> góc B  + góc C = 90

mà góc B = 60

=> góc C = 30

=> góc C < góc B xét tam giác ABC

=> AB < AC (đl)

3 tháng 5 2019

tgiac ABC vuông ở , B=60¤=> C=30¤

=>AC>AB vì 

AC là cạnh đối diện với góc lớn hơn (60¤)

AB.......................................nhở hơn (30¤)..

13 tháng 5 2017

b)  Xét tam giác abc và tam giác dbe có:

   \(\widehat{b}\): góc chung

   ab = bd (gt)

  \(\widehat{bac}\)\(\widehat{bde}\)( = 90 độ )

Vậy: tam giác abc = tam giac dbe