K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độa) Tính góc C.b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.a) Chứng minh tam giác AMB = tam giác AMC.b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.c) Qua C, vẽ...
Đọc tiếp

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ

a) Tính góc C.

b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.

Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.

a) Chứng minh tam giác AMB = tam giác AMC.

b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.

c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.

Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.

a) Chứng minh tam giác MAB = tam giác MDC.

b) Chứng minh rằng AB = CD và AB // CD.

Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.

a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.

b) Chứng minh rằng: AH // DE.

*Vẽ hình giúp mình*

1
17 tháng 4 2020

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau

27 tháng 12 2016

a) Xet tam giac ABD va tam giac EBD co :

AB=BE (gt)

Goc B1=goc B2 ( BD la tia phan giac cua goc ABC)

BD chung

Suy ra tam giac ABD = tam giac EBD (c-g-c)

b) Goi I la giao diem cua AE va BD

Xet tam giac BAI va tam giac BEI co :

AB=BE(gt)

Goc B1=goc B2 ( BD la tia phan giac cua goc ABC)

AI chung

Suy ra tam giac BAI = tam giac BEI (c-g-c)

Suy ra goc I1=goc I2 ( hai goc tuong ung)

Ma goc I1+I2=180do ( hai goc ke bu)

Suy ra goc I1=goc I2=180 do:2=90 do (1)

Suy ra BI vuong goc voi AE ( dinh nghia) (2)

Tu (1) va (2) ta suy ra BD la duong trung truc cua AE

c) Tam giac ABD = tam giac EBD (cmt)

Suy ra goc BAD= goc BED ( hai goc tuong ung)

Ma goc BAD =90 do(gt)

Suy ra goc EBD=90 do

Suy ra ED vuong goc voi BC ( dinh nghia )

Ma AH vuong goc voi BC (gt)

Suy ra AH // DE ( theo quan he tu vuong goc den song song)

d) Tam giac ABC co:

Goc ABC + goc BAC +goc C=180 do ( dinh li tong ba goc trong tam giac)

Suy ra goc ABC=180 do -(goc BAC +goc C)

Hay goc ABC =180 do -(90 do+ goc C)(1)

Tam giac EDC co:

Goc EDC+ goc DEC + goc C=180 do ( dinh li tong ba goc trong tam giac)

Suy ra goc EDC=180 do -(goc DEC +goc C)

Hay goc EDC=180 do -(90 do + goc C)(2)

Tu (1) va (2) ta suy ra goc ABC= goc EDC (=180do-(90 do+goc C))

Nho mik nh ban !

27 tháng 12 2016

ghi ghi cái éo j thế phần d sai rồi

28 tháng 4 2024

Hình đâu 

9 tháng 2 2019

a, Xét tam giác ABE và tam giác HBE có

                AB=HB(gt)

               \(\widehat{ABE}\)=\(\widehat{HBE}\)(gt)

                BE chung

\(\Rightarrow\)\(\Delta\)ABE=\(\Delta\)HBE(c.g.c)\(\Rightarrow\)\(\widehat{EAB}\)=\(\widehat{EHB}\)mà \(\widehat{EAB}\)=90 độ\(\Rightarrow\)\(\widehat{EHB}\)=90 độ

\(\Rightarrow\)EH vuông góc vs BC

31 tháng 1 2020

a) Vì BE là tia phân giác của tam giác ABC

=> \(\widehat{ABE}=\widehat{EBC}\)hay \(\widehat{ABE}=\widehat{EBH}\)

* Xét tam giác ABE và tam giác HBE có :

 + )BA = BH ( gt)

+) \(\widehat{ABE}=\widehat{EBH}\)  (cmt)

+)BE chung

=> tam giác ABE = tam giác HBE ( c-g-c)

-> \(\widehat{BAE}=\widehat{BHE}\)( hai cạnh tương ứng )

Mà \(\widehat{BAE}=90^0\)\(\widehat{BAC}=90^0\))

-> \(\widehat{BHE}=90^0\)

=> BH vuông góc EH hay BC vuông góc EH ( đpcm)

b) Vì tam giác ABE = tam giác HBE (cmt)

=> AE = EH ( 2 cạnh tương ứng )

* Có : AE = EH ( cmt)

=> Khoảng cách từ điểm E đến H bằng khoảng cách từ điểm E đến A ( 1)

BA = BH ( gt )

=. Khoản cách từ điểm B đến điềm H bằng khoảng cách từ điểm B đến điểm A ( 2 )

Từ ( 1 ) và ( 2 ) => BE là đường trung trực của AH ( đpcm )

c) Vì tam giác ABC có \(\widehat{A}\)\(90^0\) ( gt)

=> AB vuông góc AC hay AE vuông góc AK ( E e AC ; K e AB )

=>\(\widehat{EAK}=90^0\)

Vì EH vuông góc AC ( cmt)

=> \(\widehat{EHC}=90^0\)

Xét tam giác AEK và tam giác HEC có 

AE = EH (cmt)

\(\widehat{EAK}=\widehat{EHC}=90^0\)

\(\widehat{AEK}=\widehat{HEC}\)(đối đỉnh)

=> tam giác AEK = tam giác HEC ( g-c-g)

=> EK = EC ( 2 cạnh tương ứng)

d) Có : BA = BH ( gt 0

=> tam giác BAH cân tại B

=. \(\widehat{BAH}=\frac{180^0-\widehat{ABH}}{2}\)( 3)

Vì tam giác AEK = tam giác HEC ( cmt )

=> AK = HC ( 2 cạnh tương ứng)

Có: AK = BA + AK

      BC = BH + HC

Mà BA = BH ( gt )

AK = HC ( cmt)

=> BK = BC

=> Tam giác BKC cân tại B

=>\(\widehat{BKC}=\frac{180^0-\widehat{KBC}}{2}\)hay \(\widehat{BKC}=\frac{180^0-\widehat{ABH}}{^{ }2}\)( 4 )

Từ ( 3 ) và ( 4 ) => \(\widehat{BAH}=\widehat{BKC}\)

Mà 2 góc ở vị trí đồng vị

=> AH // BC ( đpcm)

e) Có :  Tam giác BKC cân tại B

M là trung điểm BC 

=> BM là đường trung tuyến đồng thời là đường phân giác của tam giác BKC

Có BK là đường phân giác của tam giác BKC (cmt)

=> BK là đường phân giác của\(\widehat{KBC}\)hay \(\widehat{BAH}\)

Mà BE cũng là đường phân giác của \(\widehat{BAH}\)

=> BE trùng BK hay ba điểm B ; E ; K thẳng hàng ( đpcm)

31 tháng 12 2023

 

e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ  ( 1 ) và ( 2 ) => B, D , M thằng hàng