Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{HMC}=30^0\)
b: Xét ΔMHC vuông tại H và ΔMKA vuông tại K có
MC=MA
\(\widehat{CMH}=\widehat{AMK}\)
Do đó: ΔMHC=ΔMKA
Suy ra: MH=MK
Xét tứ giác AHCK có
M là trung điểm của AC
M là trung điểm của HK
Do đó: AHCK là hình bình hành
Suy ra: AH//CK
a: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là phân giác của góc BAC
c: ΔABC cân tại A
mà AH là trung tuyến
nên AH là trung trực của BC
=>I nằm trên trung trực của BC
=>IB=IC
d: Xet ΔABN có góc ABN=góc ANB=góc MBC
nên ΔABN can tại A
=>AB=AN
e: Xét ΔABC co
BM,AM là phân giác
nên M là tâm đừog tròn nội tiếp
=>CM là phân giác của góc ACB
Xét ΔHCM vuông tại H và ΔKCM vuông tại K có
CM chung
góc HCM=góc KCM
=>ΔHCM=ΔKCM
=>MH=MK
a) xét \(\Delta ABC\)CÓ
\(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=36+64=100\)
VÌ \(100=100\)
\(\Rightarrow BC^2=AB^2+AC^2\)
VẬY \(\Delta ABC\) VUÔNG TẠI A
trong tam giác ABC ta có :
AB2=62=36
AC2=82=64
BC2=102=100
ta thấy : 100=36+64 => BC2=AC2=AB2( định lý pytago đảo )
=> tam giác ABC vuông tại A
CHÚC BẠN HỌC TỐT !!!
A B C H K E N M a, ^BAC + ^BAK = 180 (kề bù)
^BAC = 135 (gt)
=> ^BAK = 45
xét ΔAKB có : ^AKB = 90
=> ΔAKB vuông cân (dấu hiệu)
b, ^KBC = 90 - ^KCB
^CAH = 90 - ^ACH
=> ^CAH = ^ABK
^CAH = ^KAE (đối đỉnh)
=> ^ABK = ^KAE
xét ΔAKE và ΔBKC có : ^CKB = ^AKE = 90
AK = KB do ΔAKB cân tại K (câu a)
=> ΔAKE = ΔBKC (cgv-gnk)
=> AE = BC (định nghĩa)
c, kẻ MK
xét ΔMNE và ΔMNK có : MN chung
^MNE = ^MNK = 90
NE = NK do N là trung điểm của EK (Gt)
=> ΔMNE = ΔMNK (2cgv)
=> MN = MK (định nghĩa) (1)
^EMN = ^KMN (định nghĩa) (2)
MN ⊥ BE ; CK ⊥ BE => MN // CK (định lí)
=> ^EMN = MCK (đồng vị)
^NMK = ^MKC (so le trong)
và (2)
=> ^MCK = ^MKC
=> ΔMKC cân tại M (dấu hiệu)
=> MK = MC (định nghĩa) và (1)
=> ME = MC mà M nằm giữa C và E
=> M là trung điểm của EC