Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có:
ˆBID=12ˆBIC=12(180o−ˆBCI−ˆIBC)=12(180o−12ˆBCA−12ˆABC)=12(180o−12(ˆBCA+ˆABC)=12(180o−12(180o−ˆBAC)=60oBID^=12BIC^=12(180o−BCI^−IBC^)=12(180o−12BCA^−12ABC^)=12(180o−12(BCA^+ABC^)=12(180o−12(180o−BAC^)=60o
Lại có :
ˆNIB=ˆIBC+ˆICB
=1/2ˆABC+1/2ˆACB
=1/2(ˆABC+ˆACB)
=1/2(180o−ˆBAC)=60o
NIB^=IBC^+ICB^
=1/2ABC^+1/2ACB^
=1/2(ABC^+ACB^
=1/2(180o−BAC^)=60o
=>ˆNIB=ˆBID
=>ΔNIB=ΔDIB(g.c.g)
=>BN=BD(cmt)
b.Chứng minh tương tự câu a
→CD=CM
→BN+CM=BD+CD=BC→đpcm
Gọi H là giao điểm của NC và BM
Vẽ HK là phân giác BHC => BHK = CHK = BHC/2
Có: A + ABC + ACB = 180o
=> 60o + ABC + ACB = 180o
=> ABC + ACB = 180o - 60o = 120o
=> ABC/2 + ACB/2 = 60o
Mà NBH = HBK = ABC/2; KCH = MCH = ACB/2
Nên HBK + HCK = 60o
=> BHC = 180o - (HBK + HCK) = 180o - 60o = 120o
=> BHK = KHC = BHC/2 = 60o
Có: BHN + BHC = 180o ( kề bù)
=> BHN + 120o = 180o
=> BHN = 180o - 120o = 60o
Xét t/g BHK và t/g BHN có:
BHK = BHN = 60o (cmt)
BH là cạnh chung
NBH = KBH (gt)
Do đó, t/g BHK = t/g BHN (g.c.g)
=> BK = BN (2 cạnh tương ứng) (1)
Tương tự như vậy ta cũng có: t/g KHC = t/g MHC (g.c.g)
=> KC = MC (2 cạnh tương ứng) (2)
Từ (1) và (2) => BN + MC = BK + KC = BC (đpcm)
-Gọi I là giao điểm của BM và CN.
-Kẻ tia ID là tia phân giác của góc BIC.
Bầm vào thống kê của mình để xem link:
Câu hỏi của Cathy Trang - Toán lớp 7 | Học trực tuyến
Tham khảo nha
Gọi H là giao điểm của NC và BM
Vẽ HK là phân giác BHC => BHK = CHK = BHC/2
Có: A + ABC + ACB = 180o
=> 60o + ABC + ACB = 180o
=> ABC + ACB = 180o - 60o = 120o
=> ABC/2 + ACB/2 = 60o
Mà NBH = HBK = ABC/2; KCH = MCH = ACB/2
Nên HBK + HCK = 60o
=> BHC = 180o - (HBK + HCK) = 180o - 60o = 120o
=> BHK = KHC = BHC/2 = 60o
Có: BHN + BHC = 180o ( kề bù)
=> BHN + 120o = 180o
=> BHN = 180o - 120o = 60o
Xét t/g BHK và t/g BHN có:
BHK = BHN = 60o (cmt)
BH là cạnh chung
NBH = KBH (gt)
Do đó, t/g BHK = t/g BHN (g.c.g)
=> BK = BN (2 cạnh tương ứng) (1)
Tương tự như vậy ta cũng có: t/g KHC = t/g MHC (g.c.g)
=> KC = MC (2 cạnh tương ứng) (2)
Từ (1) và (2) => BN + MC = BK + KC = BC (đpcm)