Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi mink mới học có lớp 5 thôi à nên MINK ko thể giúp bn đc xin lỗi NGUYỄN ANH TÚ
Có lẽ câu mà cậu chưa làm được là c nhưng rất tiếc là tớ đang trong tình trạng suy nghĩ :v
a)
*) Ta có: \(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=90^o+\widehat{BAC}=\widehat{EAC}+\widehat{BAC}=\widehat{EAB}\)
Xét tam giác DAC và tam giác BAE
DA=BA
\(\widehat{DAC}=\widehat{BAE}\)
AC=AE
=> \(\Delta DAC=\Delta BAE\left(c.g.c\right)\) => DC=BE (cạnh tương ứng) và \(\widehat{E_1}=\widehat{C_1}\) (góc tương ứng)
*) Trong tam giác ANE có: \(90^o+\widehat{E_1}+\widehat{N_1}=180^o\) (1)
*) Trong tam giác TNC có: \(\widehat{NTC}+\widehat{C_1}+\widehat{N_2}=180^o\) (2)
Từ 1 và 2 => \(90^o+\widehat{E_1}+\widehat{N_1}=\widehat{NTC}+\widehat{C_1}+\widehat{N_2}\) Mà \(\widehat{E_1}=\widehat{C_1}\) và \(\widehat{N_1}=\widehat{N_2}\) (Góc đối đỉnh)
=> \(\widehat{NTC}=90^o\)
b) Do tam giác DTB là tam giác vuông. Áp dụng định lý Py-ta-go, ta có:\(DB^2=DT^2+BT^2\) (1)
Và tam giác TEC cũng là tam giác vuông => \(EC^2=ET^2+TC^2\) (2)
Từ 1 và 2 => \(DB^2+EC^2=DT^2+BT^2+ET^2+TC^2=\left(TB^2+TC^2\right)+\left(TD^2+TE^2\right)=DE^2+BC^2\)
Câu c thì bạn chỉ cần vẽ thêm 1 đường vuông góc với cạnh đối điện rồi làm thôi .....
Câu a)
Ta có : góc BAD = góc CAE ( = 90 độ )
=> góc BAD + góc BAC = góc CAE + góc BAC
=> góc DAC = góc BAE
Xét tam giác DAC và tam giác BAE có :
góc DAC = góc BAE ( CMT )
AD = AB ( do tam giác ABD vuông cân tại A )
AC = AE ( do tam giác ACE vuông cân tại A )
=> tam giác DAC = tam giác BAE ( cgc )
=> DC = BE ( cặp cạnh tương ứng )
và góc ADC = góc ABE ( cặp góc tương ứng )
Gọi DC giao BE tại H
Gọi DC giao AB tại O
Do tam giác ADO vuông tại A ( GT )
=> góc ODA + góc DOA = 90 độ
Mà góc ODA = góc ABH ( CMT )
và góc DOA = BOH ( 2 góc đối đỉnh )
=> góc BOH + góc OHB = 90 độ
=> tam giác OBH vuông tại H
=> OH vuông góc BH
hay DC vuông góc BE
Vậy....
a) \(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}=\widehat{BAE}\)
\(AD=AB;AC=AE\)
\(\Rightarrow\)△ADC=△ABE (c-g-c).
b) AB cắt DC tại F.
\(90^0=\widehat{DAF}=180^0-\widehat{DFA}-\widehat{ADF}=180^0-\widehat{BFK}-\widehat{FBK}=\widehat{FKB}\)
\(DB^2+KC^2=DK^2+KB^2+BC^2-KB^2=BC^2+DK^2\)
a) \(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}=\widehat{BAE}\)
\(AD=AB;AC=AE\)
\(\Rightarrow\)△ADC=△ABE (c-g-c).
b) AB cắt DC tại F.
\(90^0=\widehat{DAF}=180^0-\widehat{DFA}-\widehat{ADF}=180^0-\widehat{BFK}-\widehat{FBK}=\widehat{FKB}\)
\(DB^2+KC^2=DK^2+KB^2+BC^2-KB^2=BC^2+DK^2\)
c) Trên tia đối IA lấy G sao cho IA=IG
\(\Rightarrow\)△ADI=△GEI (c-g-c) \(\Rightarrow\)AD//GE.
△DGI=△EAI (c-g-c) \(\Rightarrow\)DG//AE ; DG=AE=AC.
\(90^0+\widehat{BAH}+\widehat{DAG}+90^0+\widehat{GAE}+\widehat{HAC}=360^0\)
\(\Rightarrow\widehat{BAC}+\widehat{DAE}=180^0\)
\(\Rightarrow\widehat{BAC}=\widehat{ADG}\)
\(\Rightarrow\)△ADG=△BAC (c-g-c).
\(\widehat{ABC}+\widehat{BAH}=\widehat{DAG}+\widehat{BAH}=90^0\)