Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F I
a,
ta có
A + B+ C = \(180^0\)
B + C = \(180^0\)- A
mà BI là phân giác góc B
IBC = \(\frac{1}{2}\)B
CI là phân giác góc C
ICB = \(\frac{1}{2}\)C
suy ra
IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)( \(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)= \(60^0\)
mà IBC + ICB + BIC = \(180^0\)
suy ra BIC = \(180^0\)- ( IBC + ICB )
BIC = \(180^0\)- \(60^0\)
BIC = \(120^0\)
b,
ta có vì I là giao điểm của phân giác góc B và C
suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC
nên IE = ID = IF
c,
ta có EIB + BIC =\(180^0\)
EIB = \(180^0-120^0\)
EIB = \(60^0\)
Mà EIB đối đỉnh góc DIC
suy ra DIC = EIB = \(60^0\)
vì IF là tia phân giác góc BIC
nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)= \(60^0\)
EIF = BIE + BIF = \(60^0+60^0=120^0\)
DIF = DIC + CIF = \(60^0+60^0=120^0\)
xét tam giác EIF và DIF có
EIF = DIF = \(120^0\)
IF là cạnh chung
IE = ID
suy ra tam giác EIF = tam giác DIF ( c-g-c )
suy ra EF = DF
ta có góc BIC đối đỉnh góc EID
nên BIC = EID = \(120^0\)
xét tam giác EIF và EID có
EID = EIF =\(120^0\)
ID = IF
IE cạnh chung
suy ra tam giác DIE = tam giác FIE ( c-g-c )
suy ra ED = EF
mà EF = DF
suy ra ED = EF = DF
suy ra tam giác EDF là tam giác đều
d,
ta có IE = IF = ID
nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF
mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó
suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF
A B C E D F O
a) +) Ta có:
^BOC = 90\(^o\)+ \(\frac{\widehat{BAC}}{2}\)= 120\(^o\)
+) OF là phân giác của ^BOC
=> ^BOF = ^COF = 60\(^o\)
+) Ta có: ^BOE + ^BOC = 180\(^o\)
=> ^BOE = 180\(^o\)- 120 \(^o\)= 60 \(^o\)
=> ^DOC = ^BOE = 60 \(^o\) ( đối đỉnh)
+) Xét \(\Delta\)OBF và \(\Delta\)OBE có:
^BOF = ^BOE = 60\(^o\)
OB chung
^OBF = ^OBE ( BO là phân giác ^EBF )
=> \(\Delta\)OBF = \(\Delta\)OBE
=> OE = OF (1)
+) Xét \(\Delta\)ODC và \(\Delta\)OFC có:
^DOC = ^FOC = 60\(^o\)
OC chung
^DCO = ^FCO ( CO là phân giác ^DCF )
=> \(\Delta\)ODC = \(\Delta\)OFC
=> OD = OF (2)
Từ (1); (2) => OD = OE = OF
b) Ta có: OE = OF => \(\Delta\)OEF cân và ^EOF = ^EOB + ^FOB = 60\(^o\)+60\(^o\)=120\(^o\)
=> ^OEF = ^OFE = ( 180\(^o\)-120\(^o\)) : 2 = 30 \(^o\)
Tương tự ta có thể chứng minh đc:
^OFD = ^ODF = 30\(^o\)
^OED = ^ODE = 30\(^o\)
=> ^DFE = ^DEF = ^EDF = 30\(^o\)+30\(^o\)= 60\(^o\)
=> Tam giác DEF đều
Tại sao ^BOC = 90\(^o+\frac{\widehat{BAC}}{2}\). Em nên nhớ nó bởi vì sẽ ứng dụng vào rất nhiều bài.
Xét \(\Delta\)BOC có: ^BOC + ^BCO + ^CBO = 180\(^o\)
=> ^BOC = 180\(^o\)- ( ^BCO + ^CBO ) = 180\(^o\)- ( \(\frac{1}{2}\)^BCA + \(\frac{1}{2}\)^CBA) = 180\(^o\)- \(\frac{1}{2}\)( ^BCA + ^CBA) (1)
Xét \(\Delta\)ABC có: ^BAC + ^BCA + ^ABC = 180\(^o\)=> ^BCA + ^ABC = 180\(^o\)- ^BAC (2)
Từ (1); (2) => ^BOC = 180\(^o\) - \(\frac{1}{2}\)( 180\(^o\) - ^BAC ) = 90\(^o\)+ \(\frac{\widehat{BAC}}{2}\)
Em l 6 ko b lam