K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2015

Tam giác ABC có 

A + B + C = 180 ĐỘ => B + C = 180 - A = 180 - 50 = 130 ĐỘ 

Theo bài ra ta có 

B : C = 2 : 3 => B/2 = C /3 

Áp dụng dãy tỉ số (=) ta có

    \(\frac{B}{2}=\frac{C}{3}=\frac{B+C}{2+3}=\frac{100}{5}=20\)

=> B = 40 ĐỘ

=> C = 60 ĐỘ 

Tam giác ABC có B < A < c( 40 < 50 < 60 ) => AC < BC < AB

VẬy ý C đúng

 

30 tháng 3 2021

sao lại 100? tổng của nó là 130 mà

 

B.BC<AB<AC nhé

Hok tốt

Goodnight

Cho tam giác ABC có A=45o; B=75o. Ta có:

B.BC<AB<AC

Hok tot

B.BC<AB<AC nhé

Hok tốt!

goodluck

8 tháng 2 2022

ggggggggggggggggg

18 tháng 4 2016

Ta có (a+b)>=0 => a+ 2ab + b>= 0 => a2 + b>= 2ab. (1)

         (b+c)>=0 => b+ 2bc + c>= 0 => b2 + c>= 2bc. (2)

         (c+a)>=0 => c+ 2ca + a>= 0 => c2 + a>= 2ca. (3)

Cộng (1), (2), (3), theo vế ta có 2(a2 + b2 + c2)>=2(ab+bc+ca)

suy ra a2 + b2 + c2>=ab+bc+ca (*)

Áp dụng bất đẳng thức trong tam giác ta có:

a+b>c => ac+bc>c2. (4)

b+c>a => ab+ac>a2. (5)

c+a>b => bc+ab>b2. (6)

Cộng (4), (5), (6) theo vế ta có 2(ab+bc+ca)>a2+b2+c2(**)

Từ (*) và (**) suy ra đpcm.

12 tháng 12 2016

xfffff

Ta có: BC > AB > AC ( vì 8cm > 6cm >5cm)

=> \(\widehat{A}>\widehat{C}>\widehat{B}\)(Quan hệ giữa góc và cạch đối diện trong tam giác)

=> D là đáp án đúng

=> chọn B

nhầm nhé bạn mik viết nhầm

=> chọn D

24 tháng 1 2019

1. A B C D E

Chọn điểm D như hình vẽ. Gọi E là giao điểm của AB và DC. 

Ta có: \(\widehat{ADE}\)là góc ngoài của tam giác ADC => \(\widehat{ADE}>\widehat{ACD}\)(1)

Tương tự \(\widehat{BDE}>\widehat{BCD}\)(2)

(1), (2) => \(\widehat{ADB}>\widehat{ACB}\)

Mà \(\widehat{ADB}=\widehat{ABD}\)

=> \(\widehat{ABC}>\widehat{ABD}=\widehat{ADB}>\widehat{ACB}\)

=> AC>AB

27 tháng 1 2019

A B C H

Xét tam giác ABC vuông tại A

Theo BĐT tam giác: \(AB< AC+BC\)

Và tam giác AHC vuông tại H có: \(AC< AH+CH\) (1)

\(\Rightarrow AB+AC< \left(AH+BC\right)+\left(AC+CH\right)\)

Hay \(AB+AC< \left(AH+CH+BH\right)+\left(AC+CH\right)\)

Hay \(AB+AC< AH+2CH+BH+AC\)

Bớt AC ở cả hai vế: \(AB< AH+2CH+BH\) (2)

Từ (1) và (2) suy ra \(AB+AC< 2AH+2CH+BH+CH\)

Hay \(AB+AC< 2AH+2CH+BC\)

Tới đây bí rồi.