Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1.
Gọi DI là trung trực BC
Xét ΔBIDvà ΔCID:
IDchung
\(\widehat{BDI}=\widehat{CDI}=90^o\)(ID trung trực BC)
BD = CD(như trên)
⇒ΔBID = ΔCID (c.g.c )
⇒ \(\widehat{IBD}=\widehat{C}\)(2gtu)
\(\widehat{B}-\widehat{C}\) = 40
hay \(\widehat{B}-\widehat{IBD}\) = 40
Mà\(\widehat{IBD}+\widehat{ABI}=B\)
\(\Rightarrow\widehat{ABI}=\widehat{B}-\widehat{IBD}=40^o\)
Vì đường trung trực của `AC` cắt `AB` tại `D.`
`@` Theo tính chất của đường trung trực (điểm nằm trên đường trung trực của `1` đoạn thẳng thì cách `2` đầu mút đoạn thẳng đó)
`-> \text {DA = DC}`
Xét `\Delta ACD`: `\text {DA = DC}`
`-> \Delta ACD` cân tại `D.`
`-> \hat {A} = \hat {ACD}` `(1)`
Vì `\text {CD}` là tia phân giác của $\widehat {ACB} (g$$t)$
`->` $\widehat {ACD} = \widehat {BCD} =$ `1/2` $\widehat {ACB}$ `(2)`
Từ `(1)` và `(2)`
`->` $\widehat {ACB} = \widehat {2C_2} = \widehat {2A}$
Mà `\hat {A}=35^0`
`->` $\widehat {ACB}$`=35^0*2=70^0`
Xét `\Delta ABC`:
$\widehat {BAC} + \widehat {ABC}+ \widehat {ACB}=180^0 (\text {định lý tổng 3 góc trong 1 tam giác})$
`-> 35^0+` $\widehat {ABC} + 70^0=180^0$
`->` $\widehat {ABC}= 180^0-35^0-70^0=75^0$
Xét các đáp án trên `-> C (tm)`.
Theo tổng 3 góc trong của 1 tam giác
góc A + góc B + góc C = 180 độ
góc A = 180 độ - góc B - góc C
góc A = 180 độ - 70 độ - 50 độ
góc A = 60 độ
a) Theo quan hệ giữa góc và cạnh đối diện:
Vì góc B > góc A > góc C
Suy ra cạnh AC>BC>AB
b) Xét tam giác OBD và tam giác OAC có:
OA=OB
OC=OD
góc DOB = góc COA (đối đỉnh)
=> tam giác OBD = tam giác OAC (c.g.c)
=> góc OAC = góc OBD (góc tương ứng)
mà chúng so le trong
nên AC // BD
Ta có :\(\widehat{A}+\widehat{B}+\widehat{C}=180\)
\(\Rightarrow\widehat{A}=180-\left(\widehat{B}+\widehat{C}\right)=180-\left(70+50\right)=60\)
Ta lại có : \(\widehat{B}>\widehat{A}>\widehat{C}\left(70>60>50\right)\)
\(\Rightarrow AC>BC>AB\)
\(a,\widehat{A}+\widehat{B}+\widehat{C}=180\\ \Rightarrow180-3\widehat{C}+\widehat{C}+70=180\\ \Rightarrow-2\widehat{C}=-70\\ \Rightarrow\widehat{C}=35\\ \Rightarrow\widehat{A}=180-35=145\)