Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D
a)Xét \(\Delta ABCvà\Delta ACD\),ta có:
AB=AC(gt)
BAD=CDA(gt)
AD:chung
=>\(\Delta ABC=\Delta ACD\)(c,g.c)
Theo bài ra ta có AD//EH vậy từ đây suy ra gócADE=gócDEH (1)
Vì tam giácDEC cân => gocs EDC= gocsC= góc B (2)
Ta có: B+BAD=90 độ
EDC+DEH=90 độ
Vậy từ đây suy ra BAD=DEH.
Mà BAD=DAE(gt) và ADE=DEH (1)
Vậy từ đây suy ra DAE=ADE vậy từ đây suy ra tam giác ADE cân tại A vậy suy ra AE=DỄ mà DỄ=ẸC vậy suy ra AE=EC vậy suy ra E là trung điểm của AC
Vậy suy ra 3 điểm B,G,E thẳng hàng.
Còn cái AD>BD thì mình giải sau nhé. Không còn thời gian rồi
A B C D G M E F
a) Do G là trọng tâm tam giác ABC nên AG = 2GM. Lại có AG = GD nên GD = 2GM hay GM = DM.
Xét tam giác DMB và tam giác GMC có:
DM = GM
BM = CM
\(\widehat{DMB}=\widehat{GMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta DMB=\Delta GMC\left(c-g-c\right)\)
\(\Rightarrow BD=CG\)
b) Do \(\Delta DMB=\Delta GMC\Rightarrow\widehat{FBM}=\widehat{ECM}\)
Xét tam giác FBM và tam giác ECM có:
\(\widehat{FMB}=\widehat{EMC}=90^o\)
BM = CM
\(\widehat{FBM}=\widehat{ECM}\)
\(\Rightarrow\Delta FBM=\Delta ECM\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow BF=CE\left(đpcm\right)\)