K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

A E B C F I M D

a) Xét tam giác BEM và tam giácCFM

có:BM=MC(gt)

     góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)

b)

Xét tam giác vg AEM va t/g vg AFM

có:EM=MF(t/g BEM=t/gAFM)

    AM là cạnh chung

->t/g AEM =t/g AFM( c/ huyền -c.góc vg)

->AE=AF(2 cạnh tương ứng)

Xét tam giác AEI và t/g AFI 

có:MF=EM(t/g BEM= t/g CFM)

    AM là cạnh chung

    AF=AE(C/ m trên)

->t/g AEI =t/g AFI(c-c-c)

->EI = IF(2 cạnh tương ứng)

->góc AIE= góc AIF(2 tương ứng)

=>AE là đường trung trực của EF

c(mik ko pt lm) 

3 tháng 5 2018

a và b bạn Hương Sơn 

c) Ta có: 

\(\Delta ABC\)cân

có AM là đường trung tuyến 

=> AM cũng  là đường trung trực

=> \(AM\perp BC\)

=> AM = 90 độ

Vì \(\Delta ABC\)cân 

=> Góc ABM = góc ACM          (1)

mà Góc ABD = góc ACD = 90 độ            (2)

Từ (1) và (2) => Góc MBD = góc MCD 

Xét \(\Delta DMB\)và \(\Delta DMC\)có :

DM : cạnh chung     (1)

Góc MBD = góc MCD ( chứng minh trên )            (2)

BM = MC ( vì AM là đường trung tuyến của tam giác ABC )                  (3)

Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)

=> Góc CMD = góc BMD ( cặp góc tương ứng)

Mà Góc CMD + góc BMD = 180 độ

=> Góc CMD = BMD = 180 : 2 = 90 độ

Vì Góc AMC = 90 độ ( vì AM là đường trung trực)

và  góc CMD = 90 độ

=> AMC + CMD = AMD

=> 90 + 90 = AMD 

=> AMD = 180 độ

=>   Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)

Chúc bạn học tốt !

a) Xét ΔABK vuông tại B và ΔACK vuông tại C có

AK chung

AB=AC(ΔABC đều)

Do đó: ΔABK=ΔACK(cạnh huyền-cạnh góc vuông)

28 tháng 5 2022

d) △ABC đều có: CD là đường cao \(\Rightarrow\)CD cũng là phân giác.

\(\Rightarrow\widehat{BCD}=\widehat{ACD}\).

Mà \(\left\{{}\begin{matrix}\widehat{BCD}=\widehat{IBC}\\\widehat{ACD}=\widehat{CIB}\end{matrix}\right.\) (DC//BI)

\(\Rightarrow\widehat{IBC}=\widehat{CIB}\)

\(\Rightarrow\)△BCI cân tại C.

28 tháng 5 2022

mình mới nghĩ được đến đây, rất xin lỗi bạn, vẫn còn ý đầu của câu d, nếu mình nghĩ ra sẽ làm giúp bạn nha

undefined

undefined

12 tháng 1 2017
bài toán này cũng dễ mà,nó ra là ... thôi bạn tự là đ
6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

11 tháng 7 2018

a. AM là phân giác của tam giác ABC cân tại A => AM cũng là đường cao và đường phân giác trong ta giác ABC

=> góc EAM = góc FAM

=> Tam giác EAM = tam giác FAM (cạnh huyền - góc nhọn)

=> EA=FA và EM = FM (1)

TA có: AB =AC => AB - AE = AC - ÀF <=> BE = FC (2)

Và AM là đường trung tuyến của tam giác ABC => BM =MC (3)

Từ (1), (2), (3) => tam giác BEM = tam giác CFM (c-c-c)

11 tháng 7 2018

A E B F C D M

a, Xét t/g BEM và t/g CFM có:

góc BEM = góc CFM = 90 độ (gt)

MB = MC (gt)

góc B = góc C (gt)

=> t/g BEM = t/g CFM (cạnh huyền - góc nhọn)

b, Xét t/g AEM và t/g AFM có:

EM = FM (t/g BEM = t/g CFM)

góc AEM = góc AFM = 90 độ (gt)

AM chung

=> t/g AEM = t/ AFM (c.g.c)

=> AE = AF

=> tg/ AEF cân tại A

Mà AM là tia phân giác của t/g AEF

=> AM là đường trung trực của t/g AEF hay AM là đường trung trực của EF 

c, Vì t.g ABC cân tại A và AM là trung tuyến cuả BC

=> AM cũng là đường trung trực của BC (1)

=> góc AMB = 90 độ

Xét t/g DMB và t/g DMC có:

MB = MC (gt)

góc DMB = góc DMC = 90 độ (cmt)

DM chung

=> t/g DMB = t/g DMC (c.g.c)

=> DB = DC => D thuộc trung trực của BC

Mà MB = MC => M thuộc trung trực của BC

=> DM là trung trực của BC (2)

Từ (1) và (2) => A,D,M thẳng hàng