K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

A B C M H

Vì AM là đường trung tuyến của tam giác vuông ABC nên ta có AM = MC = MB = BC/2

Dễ thấy \(\widehat{AMB}=2.\widehat{ACB}\) (Tam giác AMC cân tại M có AMB là góc ngoài)

Suy ra : \(Sin2\alpha=Sin\widehat{AMB}=\frac{AH}{AM}\)

Mặt khác ta lại có \(BC=2AM\) ; \(AH=\frac{AB.AC}{BC}\) \(\Rightarrow Sin2\alpha=\frac{\frac{AB.AC}{BC}}{\frac{BC}{2}}=\frac{2AB.AC}{BC^2}=2.\frac{AB}{BC}.\frac{AC}{BC}=2Sin\widehat{ABC}.Sin\widehat{ACB}=2Cos\alpha.Sin\alpha\)

Vậy \(Sin2\alpha=2Sin\alpha.Cos\alpha\)

22 tháng 10 2016

Ta có : \(cotg\alpha=\frac{1}{tan\alpha}=\frac{a^2+b^2}{2ab}\Rightarrow tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{2ab}{a^2+b^2}\)

\(\Rightarrow tan^2\alpha+1=\frac{sin^2\alpha}{cos^2\alpha}+1=\frac{1}{cos^2\alpha}=\left(\frac{2ab}{a^2+b^2}\right)^2+1\)

\(\Rightarrow cos^2\alpha=\frac{1}{\left(\frac{2ab}{a^2+b^2}\right)^2+1}\)

Tới đây bạn khai căn ra là được nhé (chú ý điều kiện \(0^o< \alpha< 90^o\))

16 tháng 8 2020

\(\sin\alpha=\frac{2}{5}\)

\(\Rightarrow\cos\alpha=\sqrt{1-\sin^2\alpha}\)

\(=\sqrt{1-\frac{4}{25}}\)

\(=\sqrt{\frac{21}{25}}=\)\(\frac{\sqrt{21}}{5}\)

\(\Rightarrow\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{2}{5}:\frac{\sqrt{21}}{5}=\frac{2}{\sqrt{21}}\)và \(\cot\alpha=\frac{\sqrt{21}}{2}\)

2. Tương tự a)

\(\cos B=\sqrt{1-\sin^2B}\)

\(=\sqrt{1-\frac{1}{4}}\)

\(=\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}\)

\(\tan B,\cot B\)bạn tự tính nốt.

16 tháng 8 2020

\(sin\alpha=0,4\Rightarrow sin^2\alpha=0,16\Rightarrow cos^2\alpha=1-sin^2\alpha=1-0,16=0,84\Rightarrow cos\alpha=\frac{\sqrt{21}}{5}\)

\(tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{0,4}{\frac{\sqrt{21}}{5}}=\frac{2\sqrt{21}}{21}\)

\(cot\alpha=1:sin\alpha=1:\frac{2\sqrt{21}}{21}=\frac{21}{2\sqrt{21}}\)

14 tháng 10 2016

+\(cos^2\alpha+sin^2\alpha=1\Rightarrow sin^2\alpha=1-cos^2\alpha=1-\frac{4}{9}=\frac{5}{6}\Rightarrow sin\alpha=\pm\sqrt{\frac{5}{6}}\)

+\(tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{\pm\sqrt{\frac{5}{6}}}{\frac{2}{3}}\)

+\(cotg\alpha=\frac{1}{tan\alpha}=\frac{\frac{2}{3}}{\pm\sqrt{\frac{5}{6}}}\)

 

9 tháng 10 2016

a) sin anpha = 2/3 => góc anpha = 42o 

cos 42o = 0,743

tan 42o =  0,9

cot  42o = 1/tan 42o = 1/0,9 = 1,111

b) tan anpha + cot anpha = 3

<=> tan anpha + 1/tan anpha = 3

<=> tananpha = 2

<=> tan anpha = \(\sqrt{2}\)

=> góc anpha =  55

Ta có: a = sin 55o . cos 55o

<=> a = 0,469