K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

a, Xét tg ABD và tg ACE có 

góc A chung

góc ADB = góc AEC (=90)

=>tg ABD đồng dạng vs tg ACE (g-g)

b, tg HEB = tg HDC (g-g) (tự cm nha) => HE/HD = HB/HC

=> HE.HC = HB.HD

1 tháng 3 2020

A B C H E D 1 1 F

a) Xét tam giác ABD và tam giác ACE có:

Góc A chung; \(\widehat{ADB}=\widehat{AEC}=90^2\)

\(\Rightarrow\Delta ADB\)đồng dạng \(\Delta ACE\left(gg\right)\)

b) Xét tam giác BHE và tam giác CHD có

\(\hept{\begin{cases}\widehat{BHE}=\widehat{CHD}\left(đ^2\right)\\\widehat{BEH}=\widehat{CDH}=90^o\end{cases}}\)

=> tam giác BHE đồng dạng với tam giác CHD (g-g)

\(\Rightarrow\frac{BH}{CH}=\frac{HE}{HD}\Rightarrow BH\cdot HD=CH\cdot HE\)

c) Khi AB=AC=b thì tam giác ABC cân tại A

=> DE//BC => \(\frac{DE}{BC}=\frac{AD}{AC}\)

\(\Rightarrow DE=\frac{AD\cdot BC}{AC}\)

Gọi giao của Ah và BC là F

=> \(AF\perp BC,FB=FC=\frac{a}{2}\)

Tam giác DBC đồng dạng tam giác FAC => \(\frac{DC}{FC}=\frac{BC}{AC}\Rightarrow DC=\frac{BC\cdot FC}{AC}=\frac{a^2}{2b}\)

\(\Rightarrow DE=\frac{AD\cdot BC}{AC}=\frac{\left(AC-DC\right)BC}{AC}=\frac{\left(b-\frac{a^2}{ab}\right)a}{b}=\frac{a\left(2b^2-a^2\right)}{2b^2}\)

24 tháng 4 2017

Khó king khủng em mới học lớp 4 thôi để em ăn cháo sen bát bảo minh trung làm được ngay nhưng phải làm thêm tí bò húc với lại rượu đế ! la la la la la ta là một con người

17 tháng 5 2023

mình cần gâps huhu

 

23 tháng 5 2017

Hình (tự vẽ)

a) Xét \(\Delta ABDva\Delta ACE\):

\(\widehat{A}\left(chung\right)\)

\(\widehat{E}=\widehat{D}\left(=90'\right)\)

\(=>\Delta ABD\)đồng dạng \(\Delta ACE\left(g-g\right)\)

\(=>\frac{AB}{AC}=\frac{AD}{AE}< =>AB.AE=AC.AD\)

b)xét \(\Delta ADEva\Delta ABC\)

\(\widehat{A}\left(chung\right)\)

\(\frac{AB}{AC}=\frac{AD}{AE}\)

\(=>\Delta ADE\)đồng dạng \(\Delta ABC\left(c-g-c\right)\)

c)Lưu Ý! Đề phải là DE cắt CB tại I

CM:

\(\widehat{IEB}=\widehat{AED}\)(đối đỉnh)

\(\widehat{AED}=\widehat{ACB}\)(tam giác ADE đồng dạng với tam giác ABC)

\(=>\widehat{IEB}=\widehat{ACB}\)

Lại có góc I chung

\(=>\Delta IBE\) đồng dạng với \(\Delta IDC\left(g-g\right)\)

d) từ c)=>\(\frac{IB}{ID}=\frac{IE}{IC}< =>ID.IE=IB.IC=\left(OI-OB\right)\left(OI+OC\right)\)

Mà OC=OB(gt)

\(=>ID.IE=\left(OI+OC\right)\left(OI-OC\right)=OI^2-OC^2\)

c: Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hbh

=>M là trung điểm của HK

=>H,M,K thẳng hàng

d: BACK là hình thoi

=>M là trung điểm của AK và AK vuông góc BC 

=>A,H,M thẳng hàng

=>ΔABC cân tại A

=>AB=AC

 

3 tháng 6 2023

tham khảo
a.Ta có BK//CH(⊥AB),CK//BH(⊥AC)BK//CH(⊥AB),CK//BH(⊥AC)

→BHCK→BHCK là hình bình hành

b.Vì BHCKBHCK là hình bình hành

→HK∩BC→HK∩BC tại trung điểm mỗi đường

Do MM là trung điểm BCBC

→M→M là trung điểm HKHK

→H,M,K→H,M,K thẳng hàng

c.Ta có O,MO,M là trung điểm AK,HKAK,HK

→OM→OM là đường trung bình ΔAHKΔAHK

→OM//AH→OM//AH

Do BD∩CE=H→HBD∩CE=H→H là trực tâm ΔABC→AH⊥BCΔABC→AH⊥BC

→OM⊥BC

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc BAD chung

Do đó: ΔABD∼ΔACE

Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AD\cdot AC\)

b: XétΔADE và ΔABC có

AD/AB=AE/AC
góc DAE chung

Do đó: ΔADE∼ΔABC

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc DAB chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD/AB=AE/AC

=>ΔADE đồng dạng vơi ΔABC

b: Xet ΔHEB vuông tại E và ΔHDC vuông tại D co

góc EHB=góc DHC

=>ΔHEB đồng dạng vơi ΔHDC

=>HE/HD=HB/HC

=>HE*HC=HB*HD

Xét tứ giác BHCK co

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>H,M,K thẳng hàng

ΔAED đồg dạng với ΔACB

=>góc AED=góc ACB

d: Xét ΔBEC vuông tại E và ΔBOA vuông tại O có

góc EBC chung

=>ΔBEC đồng dạng với ΔBOA

=>BE/BO=BC/BA

=>BE*BA=BO*BC

Xét ΔCDB vuông tại D và ΔCOA vuông tại O có

góc OCA chung

=>ΔCDB đồng dạng với ΔCOA

=>CD/CO=CB/CA

=>CO*CB=CD*CA

=>BE*BA+CD*CA=BC^2