K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 3 2023

Do B thuộc BH nên tọa độ có dạng \(B\left(b;2b+3\right)\)

Gọi E là trung điểm AB \(\Rightarrow E\left(\dfrac{b+1}{2};b+3\right)\)

Do E thuộc CE nên:

\(\dfrac{b+1}{2}+b+3-2=0\Rightarrow b=-1\) \(\Rightarrow B\left(-1;1\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(-2;-2\right)\Rightarrow\) đường thẳng AB nhận (1;-1) là 1 vtpt

Phương trình AB:

\(1\left(x-1\right)-1\left(y-3\right)=0\Leftrightarrow x-y+2=0\)

E(x;-x+2)

Theo đề, ta có: \(\left\{{}\begin{matrix}x=\dfrac{1+x_B}{2}\\-x+2=\dfrac{3+y_B}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_B+1=2x\\y_B+3=-2x+4\end{matrix}\right.\)

=>B(2x-1;-2x+1)

vecto AB=(2x-2;-2x-2)

BH: 2x-y+3=0

=>VTPT là (2;-1)

=>VTCP là (1;2)

Theo đề, ta có: 1(2x-2)+2(-2x-2)=0

=>2x-2-4x-4=0

=>-2x-6=0

=>x=-3

=>B(5;-5)

vecto AB=(4;-8)

=>VTPT là (8;4)

Phương trình AB là:

8(x-5)+4(y+5)=0

=>2(x-5)+y+5=0

=>2x-10+y+5=0

=>2x+y-5=0

29 tháng 3 2020

Hai đường trung tuyến đã cho đều không phải là đường trung tuyến xuất phát từ A vì tọa độ của A không thỏa mãn các phương trình của chúng.

Đặt BM : 5x-3y-1=0 ; CN: y-3=0 là 2 trung tuyến của tam giác ABC.

Gọi M,N là trung tuyến xuất phát từ đỉnh B và C. Đặt B(x;y) => N((x-3)/2);((y-1)/2)) và B thuộc BM; C thuộc CN.<=> 5x-3y=0 và (y-1)/2-3=0 <=> x=21/5 và y=7 => B(21/5;7)

Tương tự => C(11/5;3)

=> BC(-2;-4) => n(4;-2). Vậy phương trình đường thẳng chứa cạnh BC là 4x-2y-54/5=0<=>10x-5y-27=0

Xét lại đáp án giúp mình với. Tại thấy hơi lẻ :)))

31 tháng 3 2020

Một trong các đáp án:

A. 7x - y = 0

B. 10x + 17y - 53 = 0

C. x + 7y - 2 = 0

D. -10x + 17y - 53 = 0

10 tháng 5 2016

BC : x-4y-1=0, CA : x+2y-7=0 và AB : x-y+2=0

13 tháng 3 2021

Cho tam giác abc có tọa độ A(-2;3) pt đường trung tuyến BM 2x-y+1=0 và CN x+y-4=0 M,N lần lượt là trung điểm AC và AB .TÌM tọa độ B

23 tháng 6 2020

+) Phương trình đường cao qua B : 2x - y + 1 = 0 

=> Phương trình AC có dạng : x + 2y + c = 0 

Vì A ( 2; -1 ) thuộc AC => 2 + 2 ( -1 ) + c = 0 => c = 0

=> Phương trình AC: x + 2y = 0 

=> Tọa độ điểm C thỏa mãn phương trình AC và đường cao qua C 

nên là nghiệm của hệ pt: \(\hept{\begin{cases}x+2y=0\\3x+y+2=0\end{cases}}\)<=> C ( -4/5; 2/5) 

+) Phương trình đường cao qua B : 3x + y + 2 = 0 

=> Phương trình AB có dạng : x - 3y + b = 0 

Vì A ( 2; -1 ) thuộc AB => 2 - 3 ( -1 ) + b= 0 => c = -5

=> Phương trình AB: x -3y -5 = 0 

=> Tọa độ điểm B thỏa mãn phương trình AB và đường cao qua CB

nên là nghiệm của hệ pt: \(\hept{\begin{cases}2x-y+1=0\\x-3y-5=0\end{cases}}\)<=> C ( -8/5; -11/5) 

+) M là trung điêm BC => M ( -6/5; -9/10 ) 

Mà A ( 2; -1) 

=> \(\overrightarrow{MA}=\left(\frac{16}{5};-\frac{1}{10}\right)\)

=> MA có véc tơ pháp tuyến: ( 1/10; 16/5)

=> Viết phương trình MA : 1/10 ( x- 2 ) + 16/5 ( y+ 1 ) = 0 

<=> x + 32y+ 30 = 0  

11 tháng 1 2018

Đáp án A

Gọi AI là đường cao kẻ từ đỉnh A của tam giác. Gọi M là trực tâm của tam giác ABC

Khi đó tọa độ điểm M thỏa mãn hệ phương trình

Đ ư ờ n g   t h ẳ n g   A I   q u a   M ( 7 3 ; - 2 3 )   v à   n h ậ n   n → ( 4 ; 5 )   l à m   V T P T .

Hay 4x+ 5y – 6= 0

NV
15 tháng 2 2022

Thay tọa độ A vào 2 pt trung tuyến đều không thỏa mãn

\(\Rightarrow\) 2 trung đó đó xuất phát từ B và C, giả sử trung tuyến xuất phát từ B có pt x-2y+1=0 và từ C có pt y=1

\(\Rightarrow B\left(2b-1;b\right)\) ; \(C\left(c;1\right)\)

Gọi G là trọng tâm tam giác \(\Rightarrow\) G là giao điểm 2 trung tuyến nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x-2y+1=0\\y=1\end{matrix}\right.\) \(\Rightarrow G\left(1;1\right)\)

Áp dụng công thức trọng tâm:

\(\left\{{}\begin{matrix}1+2b-1+c=3.1\\3+b+1=3.1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2b+c=3\\b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-1\\c=5\end{matrix}\right.\)

\(\Rightarrow B\left(-3;-1\right)\) ; \(C\left(5;1\right)\)

Biết 3 tọa độ 3 đỉnh của tam giác, dễ dàng viết được phương trình các cạnh

12 tháng 3 2021

H là trực tâm của tam giác nhỉ.

A có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}2x-y+2=0\\x-2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\Rightarrow A\left(-1;0\right)\)

B có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}2x-y+2=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Rightarrow B\left(0;2\right)\)

H có tọa độ là nghiệm của hệ\(\left\{{}\begin{matrix}x-2y+1=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow H\left(0;\dfrac{1}{2}\right)\)

Phương trình đường thẳng AC: \(y=0\)

Phương trình đường thẳng CH: \(x+2y-1=0\)

C có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}y=0\\x+2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\Rightarrow H\left(1;0\right)\)

 

NV
8 tháng 4 2022

Do BC vuông góc đường cao AH kẻ từ A nên BC nhận (3;4) là 1 vtpt

Phương trình BC:

\(3\left(x+4\right)+4\left(y-0\right)=0\Leftrightarrow3x+4y+12=0\)

C là giao điểm BC và trung tuyến kẻ từ C nên tọa độ C là nghiệm:

\(\left\{{}\begin{matrix}4x+y+3=0\\3x+4y+12=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\end{matrix}\right.\) \(\Rightarrow C\left(0;-3\right)\)

Gọi M là trung điểm AB \(\Rightarrow M\) thuộc trung tuyến kẻ từ C nên tọa độ M có dạng: \(M\left(m;-4m-3\right)\)

Áp dụng công thức trung điểm: \(\left\{{}\begin{matrix}x_A=2x_M-x_B=2m+4\\y_A=2y_M-y_B=-8m-6\end{matrix}\right.\)

Do A thuộc -4x+3y+2=0 nên:

\(-4\left(2m+4\right)+3\left(-8m-6\right)+2=0\Rightarrow m=-1\) \(\Rightarrow A\left(2;2\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(-6;-2\right)\Rightarrow\) đường thẳng AB nhận (1;-3) là 1 vtpt

Phương trình AB:

\(1\left(x+4\right)-3\left(y-0\right)=0\Leftrightarrow x-3y+4=0\)

\(\overrightarrow{AC}=\left(-2;-5\right)\Rightarrow\) đường thẳng AC nhận (5;-2) là 1 vtpt

Phương trình AC:

\(5\left(x-2\right)-2\left(y-2\right)=0\Leftrightarrow5x-2y-6=0\)

NV
8 tháng 4 2022

b.

Ta có: \(\overrightarrow{AB}=\left(-6;-2\right)\Rightarrow AB=\sqrt{\left(-6\right)^2+\left(-2\right)^2}=2\sqrt{10}\)

Gọi H là chân đường cao hạ từ C xuống AB

\(\Rightarrow CH=d\left(C;AB\right)=\dfrac{\left|0-\left(-3\right).3+4\right|}{\sqrt{1^2+\left(-3\right)^2}}=\dfrac{13\sqrt{10}}{10}\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}CH.AB=13\)