Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự làm phần vẽ hình nha
ban noi C voi O .ta thay rang SOBM=SOCM va SABM=SACM =>
SAOB=SAOC=13cm2......ma SAOK=1/3SAOC=13/3cm2
ta thay SABC=3SABK=3(SABO+SAOK)=3(13+13/3)
===>SABC
Bạn có thể giải thích rõ hơn phần :
SACM = SABM => SAOC = SAOB\(\)\(\)
Hai tam giác AOM và ABM có chung đường cao hạ từ A
nên = S A O M S A B M = O M B M = 1 4
=> SAOM = 1 4 SABM
Hai tam giác ABM và ABC có chung đường cao hạ từ B
nên S A B M S A B C = A M A C = 1 3
=> SABM = 1 3 SABC
Vậy SAOM = 1 4 . 1 3 .12 = 1 (cm2)
Đáp án cần chọn là: D
a) * Chứng minh EA.EB = ED.EC
- Chứng minh Δ EBD đồng dạng với Δ ECA (gg)
- Từ đó suy ra EB/EC = ED/EA → EA.EB = ED.EC
* Chứng minh góc EAD = góc ECB
- Chứng minh Δ EAD đồng dạng với Δ ECB (cgc)
- Suy ra góc EAD = góc ECB
b) - Từ góc BMC = 120o → góc AMB = 60o → góc ABM = 30o
- Xét Δ EDB vuông tại D có góc B = 30o
→ ED = 1/2 EB
- Lý luận cho SEAD/SECB = (ED/EB)2 từ đó SECB = 144 cm2
c) - Chứng minh BMI đồng dạng với Δ BCD (gg)
- Chứng minh CM.CA = CI.BC
- Chứng minh BM.BD + CM.CA = BC2 có giá trị không đổi
Cách 2: Có thể biến đổi BM.BD + CM.CA = AB2 + AC2 = BC2
d) - Chứng minh Δ BHD đồng dạng với Δ DHC (gg)
→ BH/DH = BD/DC → 2BP/2DQ = BD/DC → BP/DQ = BD/DC
- Chứng minh Δ DPB đồng dạng với Δ CQD (cgc)
→ góc BDP = góc DCQ mà góc BDP + góc PDC = 900 → CQ ⊥ P