Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét∆BCM = ∆ICM ( c-g-c )
=) BM=MI
b)
Ta có BM=MI
=) MA+MB=MA+MI . (1)
Lai có BC=IC
=) AC+BC = AC+IC=AI . (2)
Xét∆AMI có AM+MI>AI ( bđt ∆ ). (3)
Từ (1);(2);(3)=) MA+MB>AC+BC
a: Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC
hay MB=MC
Hình tự vẽ
a) ΔABC vuông tại A.
Ta có: AB2 + BC2 = 62 + 82 = 100 (cm)
BC2 = 102 = 100 (cm)
Vì AB2 + BC2 = BC2 ( = 100 cm)
Nên ΔABC vuông tại A.
b) MA = MN.
Xét hai tam giác vuông ABM và NBM có:
BM: cạnh chung
∠ABM = ∠NBM (BM là phân giác của ∠ABC)
Do đó:ΔABM = ΔNBM (cạnh huyền - góc nhọn)
⇒ MA = MN (hai cạnh tương ứng)
c) ΔAMP = ΔNMC. MP > MN.
Xét hai tam giác vuông AMP và NMC có:
AM = MN (câu b)
∠AMP = ∠NMC (hai góc đối đỉnh)
Do đó: ΔAMP = ΔNMC (cạnh góc vuông - góc nhọn kề)
⇒ PM = MC (hai cạnh tương ứng) (1)
Xét ΔNMC vuông tại N có: MC > MN (định lí) (2)
Từ (1) và (2) suy ra: MP > MN