Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
)Ta có tam giác ABC cân tại C nên
=>IC là đường trung tuyến
=>IA=IB
b)Áp dụng định lí Py-ta-go vào tam giác IBC vuông tại I, ta có:
BC2=IB2+IC2
102=62+IC2
100=36+IC2
=>IC2=100-36
=>IC2=64
=>IC=
a: Ta có: ΔCAB cân tại C
mà CI là đường cao
nên I là trung điểm của AB
hay IA=IB
b: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó; ΔCHI=ΔCKI
Suy ra: IH=IK
c: AB=12cm nên IA=6cm
=>IC=8cm
a) Xét hai Δ vuông ACI và Δ BCI ta có:
CICI chung
AC=BCAC=BC
Góc AICAIC=Góc BICBIC=90oo
⇒ Δ ACI=ΔBCIACI=ΔBCI (ch-cgv)
⇒ IA=IBIA=IB (hai cạnh tương ứng bằng nhau)
b) Do `CA=CB=10cmnênnênΔ ABCcânđỉnhCnêngóccânđỉnhCnêngócCAB=gócgócCBA`
hay góc HAIHAI=góc KBIKBI
Xét Δ vuông IHAIHA và Δ IKBIKB có:
IA=IBIA=IB (chứng minh trên)
góc HAIHAI=góc KBIKBI
Góc AHI=BKI=90o90o
⇒ Δ IHAIHA = Δ IKBIKB (ch-gn)
⇒IH=IKIH=IK (hai cạnh tương ứng bằng nhau)
c) IA=IBIA=IB=122122=66
Áp dụng định lý Pytago vào Δ vuông ACI có:
AC²=AI²+IC²AC²=AI²+IC²
⇒ IC²=AC²−AI²=10²−6²=64IC²=AC²-AI²=10²-6²=64
⇒ IC=8
a)+) tam giác ABC có CA=CB=10cm
=> tam giác ABC cân tại C
mà CI zuông góc AB ( AB cạnh huyền )
=> CI là đường tuyến ưng zs cạnh AB cũng như là đường trung trực ứng zs cạnh AB
=> \(IC=\frac{1}{2}AB\left(1\right)\)
\(AI=IB=\frac{1}{2}AB\left(2\right)\)
từ 1 zà 2
=> \(IC=IB=\frac{1}{2}AB=\frac{1}{2}12=6cm\)
b) xét tam giác zuông AHI zà tam giác zuông IKB có
AI=IB ( cmt)
góc HAI= góc KBI ( do tam giác ABC cân cmt)
=> tam giác AHI=IKB
=>IH=Ik
c) có thể đề sai , HK ko song song zs AC đc nha
H C K A B
a) Xét hai t/g vuông t/gACI và t/gBCI có CI chung
=>AC=BC(gt)
=>t/gACI=t/gBCI(ch-cgv)
=>IA=IB
=>đpcm
b)Xét 2 t/g vuông t/gIHA và t/gIKB
=>IA=IB
^A=^B(CA=CB=>t/gABCcân)
=>t/gIHA=t/gIKB (cgv-gnk)
=>IH=IK
=>đpcm
c)Ta có IA=IB=122=6(cm)
Áp dụng định lý Pytago vào t/gACI (^I=90o)
Ta có IA2+IC2=AC2 hay 62+IC2=102
=>IC2=102-62
=>IC2=64cm
=>IC=8cm
d)
Ta có t/gCHI=t/gCKI
=>CH=CK
=>CHK cân => gCHK=180o(1)
Mà t/gABC=gCAB(180-ABC/2) (2)
Từ (1) và (2) =>HK //AB.