Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{S}{h_a}+\frac{S}{h_b}+\frac{S}{h_c}=\frac{1}{2}\left(a+b+c\right)=p=\frac{S}{r}\)
\(\Rightarrow\frac{1}{r}=\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}\)
Học tốt!!!!!!!!!!!!!!!!
Gọi O là tâm đường tròn bàng tiếp trong góc A.Ta có:
\(S_{OAC}+S_{OAB}-S_{OBC}=S_{ABC}\Rightarrow b.r_a+c.r_a-a.r_a=2S\Rightarrow S=\frac{r_a\left(b+c-a\right)}{2}=r_a\left(p-a\right).\)(p là nửa chu vi tam giác ABC)
Cm tương tự: \(S=r_a\left(p-a\right)=r_b\left(p-b\right)=r_c\left(p-c\right)=p.r\)
\(\Rightarrow\frac{S}{r_a}+\frac{S}{r_b}+\frac{S}{r_c}=p-a+p-b+p-c=3p-2p=p=\frac{S}{r}\Rightarrow\frac{1}{r}=\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}\)(đpcm)
Đặt BC=a, AC=b, AB=c
\(P=\frac{a+b+c}{2}\)
S là diện tích của tam giác ABC
Ta có công thức tính bán kính của các đường tròn bàng tiếp:
Tại góc A: \(r_a=\frac{S}{P-a}\)
Tại góc B: \(r_b=\frac{S}{P-b}\)
Tại góc C: \(r_c=\frac{S}{P-c}\)
Công thức tính bán kính đường tròn nội tiếp tam giác ABC:
\(r=\frac{S}{P}\)
=> \(\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}=\frac{P-a}{S}+\frac{P-b}{S}+\frac{P-c}{S}=\frac{3P}{S}-\frac{a+b+c}{S}\)
\(=\frac{3P}{S}-\frac{2P}{S}=\frac{P}{S}=\frac{1}{r}\)
@Nguyễn Việt Lâm@Uyen Vuuyen@Trần Trung Nguyên@Akai Haruma@JakiNatsumi@bullet sivel@Vương Đại Nguyên@Đời về cơ bản là buồn... cười!!!@Tạ Thị Diễm Quỳnh
A B C H
GỌI CÁC CẠNH AB , AC , BC LẦN LƯỢT LÀ a , b , c => \(a^2+b^2=c^2\)
TA CÓ DIỆN TÍCH TAM GIÁC ABC = ab / 2
MẶT KHÁC S DIỆN TÍCH TAM GIÁC ABC = r ( a + b + c ) / 2
=> r = \(\frac{ab}{2}.\frac{2}{a+b+c}\)
=> \(r^2=\frac{a^2b^2}{\left(a+b+c\right)^2}\)
TA CÓ AH = \(\frac{ab}{c}\)
BH = \(\frac{a^2}{c}\)
CH = \(\frac{b^2}{c}\)
CHỨNG MINH TƯƠNG TỰ TRÊN TA ĐƯỢC
\(r_1^2=\frac{AH^2.BH^2}{\left(AB+AH+BH\right)^2}=\left(\frac{\frac{ab}{c}.\frac{a^2}{c}}{\frac{ab+a^2+ac}{c}}\right)^2=\left(\frac{a^2b}{c\left(a+b+c\right)}\right)^2\)
= \(\frac{a^4b^2}{c^2\left(a+b+c\right)^2}\)
\(r_2^2=\frac{a^2b^4}{c^2\left(a+b+c\right)^2}\)
=> \(r_1^2+r_2^2=\frac{a^2b^2\left(a^2+b^2\right)}{c^2\left(a+b+c\right)^2}=\frac{a^2b^2c^2}{c^2\left(a+b+c\right)^2}=\frac{a^2b^2}{\left(a+b+c\right)^2}=r^2\)
=> đpcm
Bài toán này dựa vào nhận xét sau đây: Nếu AD,BE,CF là đường cao của tam giác thì \(\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CF}=\frac{1}{r}.\) Thực vậy, do tâm đường tròn nội tiếp chia tam giác ra thành 3 tam giác con có cùng độ dài đường cao là r. Do đó \(S=r\cdot\frac{AB+BC+CA}{2},\) với \(S\) là diện tích tam giác ABC. Mặt khác \(\frac{1}{AD}=\frac{BC}{2S},\frac{1}{BE}=\frac{CA}{2S},\frac{1}{CF}=\frac{AB}{2S}\to\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CF}=\frac{AB+BC+CA}{2S}.\) Từ đó ta có đẳng thức.
Quay lại bài toán, từ giả thiết suy ra \(\frac{1}{AM}+\frac{1}{BN}+\frac{1}{CP}=\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CF}.\) Do quan hệ giữa đường xiên và đường vuông góc, ta có \(AM\ge AD,AN\ge BE,AP\ge CF\to\)các dấu bằng phải xảy ra, do đó M,N,P trùng với chân các đường cao của tam giác. Theo tính chất của hai tiếp tuyến cắt nhau BP=BM, suy ra hai tam giác vuông AMB và CPB bằng nhau (g.c.g). Do đó AB=CB. Tương tự BC=AC. Vậy tam giác ABC đều.
Vẽ đường cao AH của \(\Delta\)ABC
Ta có: \(S_{MAB}=S_{MAC}=\frac{1}{2}S_{ABC}\)mà AM > AH (AH _|_ HM)
Do đó: \(\frac{4}{a}=\frac{2\cdot AH}{S_{ABC}}\le\frac{2AM}{S_{ABC}}=\frac{AM}{S_{MAB}}\left(1\right)\)
Gọi I là tâm đường tròn nội tiếp \(\Delta\)ABC
Ta có \(S_{ABC}=S_{IBC}+S_{IAC}+S_{IAB}\)
\(\Rightarrow S_{ABC}=\frac{r\cdot BC}{2}+\frac{r\cdot AC}{2}+\frac{r\cdot AB}{2}\)
\(\Rightarrow\frac{2}{r}=\frac{AB+BC+AC}{2S_{MAB}}\)
Tương tự xét \(\Delta\)MAB và \(\Delta\)MAC ta cũng có:
\(\hept{\begin{cases}\frac{2}{r_1}=\frac{AM+AB+\frac{BC}{2}}{S_{MAB}}\\\frac{2}{r_2}=\frac{AM+AC+\frac{BC}{2}}{A_{MAC}}\end{cases}\left(2\right)}\)
Do đó:
\(\frac{4}{a}+\frac{2}{r}\le\frac{MA}{S_{MAB}}+\frac{AB+BC+AC}{2S_{MAB}}=\frac{1}{2}\left(\frac{AM}{S_{MAB}}+\frac{AB+\frac{AC}{2}}{S_{MAB}}\right)+\frac{1}{2}\left(\frac{AM}{S_{MAC}}+\frac{AC+\frac{BC}{2}}{S_{MAC}}\right)=\frac{1}{r_1}+\frac{1}{r_2}\)
Vậy \(\frac{1}{r_1}+\frac{1}{r_2}\ge2\left(\frac{1}{r}+\frac{1}{a}\right)\)