Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét t/g ABC có \(\widehat{ABC}=\widehat{ACB}\)
=> t/g ABC cân tại A.
=> AB = AC (t/c).
Có \(\widehat{ABC}=\widehat{ACB}\)
=> \(\dfrac{\widehat{ABC}}{2}=\dfrac{\widehat{ACB}}{2}\)
=> \(\widehat{ABD}=\widehat{ACE}\) (do BD, CE là pg góc B vafC)
Xét t/g ABD và t/g ACE có
\(\widehat{A}\) :chung
AB = AC (cmt)
\(\widehat{ABD}=\widehat{ACE}\)
=> t/g ABD = t/g ACE (g.c.g)
=> BD = CE (2 cạnh t/ứ).
Xét t/g ABC có ˆABC=ˆACBABC^=ACB^
=> t/g ABC cân tại A.
=> AB = AC (t/c).
Có ˆABC=ˆACBABC^=ACB^
=> ˆABC2=ˆACB2ABC^2=ACB^2
=> ˆABD=ˆACEABD^=ACE^ (do BD, CE là pg góc B và C)
Xét t/g ABD và t/g ACE có
ˆAA^ :chung
AB = AC (cmt)
ˆABD=ˆACEABD^=ACE^
=> t/g ABD = t/g ACE (g.c.g)
=> BD = CE (2 cạnh t/ứ).
Do tam giác ABC có \(\widehat{B}=\widehat{C}\Rightarrow\Delta ABC\)cân. Mặt khác do quan hệ giữa các cạnh của tam giác cân ta có AC = AB. Gọi O là giao điểm giữa hai đoạn thẳng BD và CE. Ta có hình vẽ: (hình vẽ chỉ mang tính chất tương đối)
A B C D E O
Từ hình vẽ trên ta hình thành 2 tam giác mới: \(\Delta COD\)và \(\Delta BOE\). Ta sẽ chứng minh hai tam giác này bằng nhau.Ta có:
Dựa vào hình vẽ, dễ thấy DO = EO
CO = BO
CD = BE
Do đó: \(\Delta COD=\Delta BOE\left(c.c.c\right)\) .
Ta có: Cạnh CE = CO + EO
Cạnh BD = BO + DO
Mà CO = BO ; EO = DO nên CO + EO = BO + DO hay CE = BD
Vậy ta có: đoạn thẳng BD = đoạn thẳng CD
a)Vì \(\widehat{B}\)=\(\widehat{C}\)nên tam giác ABC cân tại A => AB=AC (1). Mặt khác, \(\widehat{B_1}\)=\(\frac{1}{2}\)\(\widehat{ABC}\), \(\widehat{C_1}\)=\(\frac{1}{2}\)\(\widehat{ACB}\)=> \(\widehat{B_1}\)= \(\widehat{C_1}\)(2).
Từ (1),(2) và \(\widehat{A}\) chung=> tam giác ABD=ACE=> BD=CE; AE=AD ; \(\widehat{E_1}\)=\(\widehat{D_1}\)
b) Vì \(\widehat{E_1}\)=\(\widehat{D_1}\)=>\(\widehat{E_2}\)=\(\widehat{D_2}\)(3); từ (1) và AE=AD => EB=DC(4)
Từ (2),(3),(4) => tam giác EBK=DCK(g.c.g)