K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2015

đúng

17 tháng 8 2015

Chứng minh: (bài toán phụ): tam giác ABC có BC = a; AC - b; AB = c. Chứng minh: b= a2 + c- 2ac. cosB

A B C H c b a

kẻ đường cao AH . 

Áp dụng ĐL Pi ta go trong tam giác vuông AHC có:   b2 = AH+ CH= AH+ (BC - BH)2 = (AH + BH) + BC- 2.BH.BC 

=> b= AB + BC - 2.AB. cosB . BC = c+ a- 2ca. cosB

17 tháng 8 2015

a) 

A B C M N G

Gọi G là giao của BM và CN

Áp dụng ĐL Pi ta go trong tam giác vuông GBC có: GB2 + GC2 = BC= a2   (*)

Áp dụng kết quả bài toán phụ ( chứng minh trên) trong tam giác BMC ta có: 

BM= BC+ CM2 - 2.CM . BC. cos C

Thay  CM = b/2 ; cos C = \(\frac{a^2+b^2-c^2}{2ab}\) ta được BM= a2 + \(\frac{b^2}{4}\) - 2.\(\frac{b}{2}\). a. \(\frac{a^2+b^2-c^2}{2ab}\) = ...= \(\frac{2a^2+2c^2-b^2}{4}\)

Áp dụng tương tự, trong tam giác CNB có: CN\(\frac{2b^2+2a^2-c^2}{4}\)

Vì G là trọng tâm tam giác ABC nên GB = \(\frac{2}{3}\) BM ; GC = \(\frac{2}{3}\) CN 

=> GB\(\frac{4}{9}\)BM\(\frac{4}{9}\).\(\frac{2a^2+2c^2-b^2}{4}\)

GC2 = \(\frac{4}{9}.\frac{2b^2+2a^2-c^2}{4}\)

Thay vào (*) ta được  : \(a^2=\frac{4\left(2a^2+2c^2-b^2\right)}{36}+\frac{4\left(2b^2+2a^2-c^2\right)}{36}\)

=> 36a= 16a2 + 4c+ 4b

=> 5a= b+ c2  => a= (b+ c2)/5

31 tháng 7 2016

Hỏi đáp Toán

31 tháng 7 2016

pn ơi lm hộ t nốt bài 2 câu b,c đc k

31 tháng 7 2016

Từ A vẽ AD _|_ BC ,AG là trung tuyến cắt BC tại E\(\Rightarrow\)\(\hept{\begin{cases}AD\le AE\Rightarrow\frac{1}{AD}\ge\frac{1}{AE}\\1.2GE=BC\left(do\Delta BGCvuongcoElatrungdiem\right)\end{cases}}\)

cotB=\(\frac{BD}{AD}\)cotC=\(\frac{CD}{AD}\)\(\Rightarrow\)2.cotB + cotC=\(\frac{BC}{AD}\)

3.G là trực tâm nên 3GE=AE\(\Rightarrow\)\(\frac{1}{AD}\ge\frac{1}{3GE}\)

từ 1, 2 và 3 \(\Rightarrow\)cotB + cotC=\(\frac{BC}{AD}\ge\frac{2GE}{3GE}=\frac{2}{3}\)

31 tháng 7 2016

\(\cot B+\cot C=\frac{BD}{AD}+\frac{CD}{AD}=\frac{BC}{AD}=\frac{BC}{3GH}\ge\frac{2GH}{3GH}=\frac{2}{3}\)
VỚI D LÀ CHÂN ĐƯỜNG CAO HẠ TỪ A XUÔNG BC , G LÀ TRỌNG TÂM , H LÀ CHÂN ĐƯỜNG CAO HẠ TỪ G XUỐNG BC
B2 THÌ GIẢI BÌNH THƯỜNG =='. ĐỌC THÊM NCPT 9 NHÉ