K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2021

1) 

Ta có : BD là đg trung tuyến của tam giác ABC (gt)

            => D là tđ của AC (1)

CE là đg trung tuyến của tam giác ABC (gt)

             =>E là tđ của AB (2)

Từ (1),(2)

=>DE là đg trung bình của tam giác ABC

=>DE // BC : DE=1/2 BC

Thay BC=10cm

=>DE=5cm

2)

a)                    Ta có:MN // BC (gt)

                              =>MI // BC

                       Lại có:ED // BC (cmt)

                             =>MI // BC

               Xét tam giác BED,có:

                        MI // BC

                        I là tđ của BD  (gt)

                      => MI là đg trung bình của tam giác BED

                      =>M là tđ của BE

b)  Ta có:  MN // BC  (gt)

               =>MK // BC

        Xét tam giác BEC,có:

            MK // BC (cmt)

           M là tđ của BE  (cmt)

        => MK là đg trung bình của tam giác BEC

c) ko đề

d)   MK là đg trung bình của tam giác BEC (cmt)

          =>MK=1/2 BC

          =>MI + IK =1/2 BC

       Thay MI =1/2 DE  (MI là đg trung bình của tam giác BED)

         =>1/2 DE + IK = 1/2 BC

            => IK =1/2 (BC-DE)

             =>IK=1/2 DE  (vì DE =1/2 BC)

         Có: MI =1/2 DE (cmt)

               KN =1/2 DE (cmt)

        =>MI=KN=IK   (=1/2 DE)

 

1 tháng 3 2020

Tui viết đó nhá,ko phải copy đâu nha !

1 tháng 3 2022

a. -Xét △ABC: AD là đường phân giác (gt)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BD}{CD}\) (định lí về đường phân giác trong tam giác)

\(\Rightarrow\dfrac{AB}{16}=\dfrac{6}{8}\)

\(\Rightarrow AB=\dfrac{6}{8}.16=12\left(cm\right)\)

b) -Xét △ABC: DE//AB (gt)

\(\Rightarrow\dfrac{EA}{EC}=\dfrac{BD}{CD}\) (định lí Ta-let)

Mà \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\left(cmt\right)\)

\(\Rightarrow\dfrac{EA}{EC}=\dfrac{AB}{AC}\) nên \(AC.EA=AB.EC\)

c) -Ta có: \(\widehat{BAD}=\widehat{CAD}\) (AD là tia phân giác của \(\widehat{BAC}\))

Mà \(\widehat{BAD}=\widehat{ADE}\) (AB//DE và so le trong)

\(\Rightarrow\widehat{CAD}=\widehat{ADE}\) nên △ADE cân tại E.

\(\Rightarrow AE=DE\)

-Xét △AIE: AP là đường phân giác.

\(\Rightarrow\dfrac{PE}{PI}=\dfrac{AE}{AI}\)(định lí về đường phân giác trong tam giác)

Mà \(AE=DE\left(cmt\right)\)\(AI=BI\) (I là trung điểm AB)

\(\Rightarrow\dfrac{PE}{PI}=\dfrac{DE}{BI}\)

-Xét △QDE: DE//BI.

\(\Rightarrow\dfrac{QD}{QI}=\dfrac{DE}{BI}\) (hệ quả định lí Ta-let)

Mà \(\dfrac{PE}{PI}=\dfrac{DE}{BI}\) nên \(\dfrac{PE}{PI}=\dfrac{QD}{QI}\)