Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi bn nhé nhưng mik chỉ làm được câu ,b thui
a/ ΔMABΔMAB và ΔMCDΔMCD có:
MB = MD (gt)
AMBˆ=CMDˆAMB^=CMD^ (đối đỉnh)
MA = MC (M là trung điểm của AC)
=> ΔMABΔMAB = ΔMCDΔMCD (c. g. c) (đpcm)
b/ ΔKMDΔKMD và ΔHMBΔHMB có:
KM = HM (gt)
KMDˆ=BMHˆKMD^=BMH^ (đối đỉnh)
MD = MB (gt)
=> ΔKMDΔKMD = ΔHMBΔHMB (c. g. c)
=> KDMˆ=HBMˆKDM^=HBM^ (hai góc tương ứng bằng nhau ở vị trí so le trong) =>
Hình dễ tự vẽ nhé ! T ngu vẽ hình trên OLM lắm :v
a ) Xét \(\Delta MAB\)và \(\Delta MCD\) có :
AM = CM ( do M là trung điểm của AC )
\(\widehat{AMB}=\widehat{CMD}\) ( hai góc đối đỉnh )
MD = MB ( gt )
nên \(\Delta MAB=\Delta MCD\left(c.g.c\right)\)
b ) Xét \(\Delta BMH\)và \(\Delta DMK\)có :
MD = MB ( gt )
\(\widehat{BMH}=\widehat{DMK}\)( Hai góc đối đỉnh )
MK = MH ( gt )
nên \(\Delta BMH=\Delta DMK\)( c.g.c )
c ) A,K,D là 3 điểm thẳng hàng ( đề ko yêu cầu CM :v )
a/ \(\Delta MAB\) và \(\Delta MCD\) có:
MB = MD (gt)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
MA = MC (M là trung điểm của AC)
=> \(\Delta MAB\) = \(\Delta MCD\) (c. g. c) (đpcm)
b/ \(\Delta KMD\) và \(\Delta HMB\) có:
KM = HM (gt)
\(\widehat{KMD}=\widehat{BMH}\) (đối đỉnh)
MD = MB (gt)
=> \(\Delta KMD\) = \(\Delta HMB\) (c. g. c)
=> \(\widehat{KDM}=\widehat{HBM}\) (hai góc tương ứng bằng nhau ở vị trí so le trong) => KD // BH (đpcm)
a: Xét ΔMAB và ΔMCD có
MA=MC
góc AMB=góc CMD
MB=MD
Do đo: ΔMAB=ΔMCD
b: Xét tứ giác BHDK co
M là trung điểm chung của BD và HK
nên BHDK là hình bình hành
=>BH//KD
c: BH//KD
BH//AD
Do đó: K,D,A thẳng hàng