Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
ˆ
E
A
B
=
ˆ
D
A
C
=
90
o
Khi ta cộng thêm vào 2 góc đó với cùng 1 góc
ˆ
B
A
C
ta được hai góc bằng nhau
ˆ
E
A
B
+
ˆ
B
A
C
=
ˆ
D
A
C
+
ˆ
B
A
C
hay
ˆ
E
A
C
=
ˆ
D
A
B
Xét
Δ
E
A
C
và
Δ
B
A
D
có:
A
E
=
A
B
(gt)
ˆ
E
A
C
=
ˆ
B
A
D
(cmt)
A
C
=
A
D
(gt)
⇒
Δ
E
A
C
=
Δ
B
A
D
(c.g.c)
⇒
E
C
=
B
D
(hai cạnh tương ứng) (đpcm).
b) Do
A
B
⊥
A
E
mà
A
E
không song song vớ
E
D
(AE giao ED tại E)
nên
A
B
không vuông góc với
E
D
.
image
Giải:
a, Vì Ay ⊥ AB
⇒ A1 = 90o <1>
Ax ⊥ AC
⇒ A2 = 90o <2>
Từ <1>,<2> ⇒ A1=A2
Mà ˆDACDAC^ = ˆA1+ˆA3A1^+A3^;
ˆEAC=ˆA2+ˆA3EAC^=A2^+A3^.
⇒ ˆDACDAC^ = ˆEACEAC^
Xét ΔDAC và ΔEAB có:
AD = AB (gt)
A1= A2= 90o90o
AE =AC (gt)
⇒ ΔDAC = ΔEAB(c.g.c)
b, Vì ΔDAC = ΔEAB(CMT)
⇒ BE⊥ CD( 2 cạnh tương ứng)
c, tự làm
a) Xét ∆AEB và ∆ADC ta có :
EA = AC
DA = AB
EAB = DAC( 2 góc đối đỉnh)
=> ∆AEB = ∆ADC (c.g.c)(dpcm)
=> BE = DC ( 2 cạnh tương ứng) (dpcm)
a)
có \(\widehat{DAC}=90^0+\widehat{BAC}\) ; \(\widehat{BAE}=90^0+\widehat{BAC}\)
\(\Rightarrow\widehat{DAC}=\widehat{BAE}\)
Xét \(\Delta ADC\)và \(\Delta ABE\)
có \(\widehat{DAC}=\widehat{BAE}\)
\(AB=AD\)
\(AC=AE\)
nên \(\Delta ADC=\text{}\Delta ABE\left(c-g-c\right)\)
b)
có\(\Delta ADC=\text{}\Delta ABE\)
nên \(CD=BE\)
Hình đẹp lắm lè
A H B C D E O K I
kẻ DO _|_ AH tại O
EI _|_ AH tại I
có góc OAD + góc BAD + góc BAH = 180
góc BAD = 90 do AD _|_ AB (gt)
=> góc OAD + góc BAH = 90 (1)
DO _|_ AH (Cách vẽ) => góc DOA = 90
=> góc ODA + góc DAO = 90 (2)
(1)(2) => góc ODA = góc BAH
xét tam giác ODA và tam giác HAB có : góc BHA = góc DOA = 90
AD = AB (gt)
=> tam giác ODA = tam giác HAB (ch - gn)
=> DO = AH (định nghĩa) (3)
làm tương tự với tam giác AHC và tam giác EIA
=> AH = EI (4)
(3)(4) => DO = EI
có EI; DO _|_ AH (cách vẽ)=> EI // DO => góc IEK = góc KDO (định lí)
xét tam giác ODK và tam giác IEK có : góc DOK = góc EIK = 90
=> tam giác ODK = tam giác IEK (cgv - gnk)
=> DK = KE mà K nằm giữa D và E
=> K là trung điểm của DE
A B C D F A B C D F A B C D E F H K a. CM AB=AF
Vì BE cắt AC tại F mà BE vuông góc AD tại E nên AE vuông góc BF
Xét tam giác AEB và tam giác AEF có
\(\widehat{BAE}=\widehat{FAE}\)(phân giác góc A cắt BC tại D)
AE chung
\(\widehat{AEB}=\widehat{AEF}\)(AE vuông góc BF)
=> tam giác AEB=tam giác AEF (g.c.g)
=>AB=AF(2 cạnh tương ứng)
b.Ta có HF // DK (đường thẳng đi qua F (gọi là a)cắt AE tại H nên H thuộc a ; a//BC mà D,K thuộc BC)
xét tứ giác HFKD :HF // DK(cmt);HF=DK (gt)
=>HFKD là hình bình hành (dhnb)
Nên DH=FK,DH//FK (t/c)
c. Vì AB <AC nên góc ABC > góc C (Cái này là lí thuyết )
Xét tam giác ABC và tam giác CDA
có AC chung
AB = CD
BC =DA
=> Tam giác ABC = tam giác CDA (c-c-c)
=> gócCAB = góc DCA ( góc tương ứng)
mà 2 góc này là 2 góc SLT
=> AB//CD.
+ góc ACB =góc CAD( góc tương ứng)
Mà 2 góc này là 2 góc SLT
=> AD//BC
Mà AH vuông góc với BC => AH vuông góc với AD
A B C F M D E
Bài làm
a) Xét tam giác AMB và tam giác FMC có:
AM = MF
\(\widehat{AMB}=\widehat{FMC}\)( hai góc đối nhau )
BM = MC
=> Tam giác AMB = tam giác FMC ( c.g.c )
=> \(\widehat{BAM}=\widehat{CFM}\)( hai góc t/ứng )
Mà hai góc này so le trong
=> AB // CF
# Học tốt #