Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ AH⊥BC tại H
Ta có: ΔABH vuông tại H(AH⊥BC tại H)
nên \(\widehat{B}+\widehat{BAH}=90^0\)(hai góc nhọn phụ nhau)
⇒\(\widehat{BAH}=90^0-\widehat{B}=90^0-60^0=30^0\)
Xét ΔABH vuông tại H có \(\widehat{BAH}=30^0\)(cmt)
mà cạnh đối diện với \(\widehat{BAH}\) là cạnh AH
nên \(AH=\dfrac{AC}{2}\)(Định lí)
hay AH=5(cm)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=10^2-5^2=75\)
\(\Leftrightarrow BH=5\sqrt{3}cm\)
Ta có: BH+HC=BC(H nằm giữa B và C)
⇔HC=BC-BH
⇔\(HC=16-5\sqrt{3}\)(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=5^2+\left(16-5\sqrt{3}\right)^2=356-160\sqrt{3}\)
hay \(AC=\sqrt{356-160\sqrt{3}}\simeq8.88cm\)
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
a) +Xét tam giác ABD :
ta có góc B = 60* ,góc BAD = 60*
mà góc B + góc BAD + ADB = 180* ( tổng 3 góc )
=> góc ADB = 60*
=> tam giac ABD là tam giác đều ( mỗi góc = 60*) => AB = BD = AD = 7cm
ta có H là trung diem BD => AH là duong trung tuyến,là tia phan giac goc BAD,là duong cao cùa tam giac ABD ( tam giac ABD đều ) => HD = HB = 1/2 BD = 3.5cm
+áp dụng định lí pitago vào tam giác ABH vuong tai H có AB = 7cm,BH = 3.5 cm :
AB^2 = AH^2 + BH^2 => em tự tính AH nhé
+ta có BH + HC = BC => HC = BC - HB = 15 - 3.5 = 11.5cm
+áp dụng dinh li pitago vào tam giac vuong AHC vuong tai H có AH ( lúc nãy tính ) và HC = 11.5cm
AC^2 =AH^2 + HC^2 => tự tính AC
b) bạn tính AB ^2 + AC^2 có = BC ^2 ko? nếu = thì tam giac ABC vuong tai A
a) Áp dụng định lí Pytago vào ΔBCA vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)
hay BC=8(cm)
Vậy: BC=8cm
a) +Xét tam giác ABD :
ta có góc B = 60* ,góc BAD = 60*
mà góc B + góc BAD + ADB = 180* ( tổng 3 góc )
=> góc ADB = 60*
=> tam giac ABD là tam giác đều ( mỗi góc = 60*) => AB = BD = AD = 7cm
ta có H là trung diem BD => AH là duong trung tuyến,là tia phan giac goc BAD,là duong cao cùa tam giac ABD ( tam giac ABD đều ) => HD = HB = 1/2 BD = 3.5cm
+áp dụng định lí pitago vào tam giác ABH vuong tai H có AB = 7cm,BH = 3.5 cm :
AB^2 = AH^2 + BH^2 => em tự tính AH nhé
+ta có BH + HC = BC => HC = BC - HB = 15 - 3.5 = 11.5cm
+áp dụng dinh li pitago vào tam giac vuong AHC vuong tai H có AH ( lúc nãy tính ) và HC = 11.5cm
AC^2 =AH^2 + HC^2 => AC =13cm
b) AB ^2 + AC^2 có = BC ^2 ko? nếu = thì tam giac ABC vuong tai A
Xét tam giác ABC có:
góc A + góc B + góc C= 180 độ ( định lí tổng 3 góc trong 1 tam giác)
<=>45 độ + 45 độ + góc A = 180 độ
=> góc A = 90 độ
=> tam giác ABC vuông tại A
Mà góc B= góc C(=45 độ)
=> tam giác ABC vuông cân tại A
Xét tam giác ABC vuông cân tại A có:
\(AB^2+AC^2=BC^2\)
<=>\(2AB^2=BC^2\)
<=>\(2.10^2=BC^2\)
<=>\(BC=10\sqrt{2}\)cm
Theo định lí cosin
\(BC^2=AB^2+AC^2-2AB.AC.\cos90=200\Rightarrow BC=10\sqrt{2}cm\)