K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2015

a)giải

+)AB < BC => góc B < góc A (1)

+)xét tam giác ABC có;

AB = AC (giả thiết)

=>tam giác ABC cân tại A

=>góc B = góc C (2)

+) xét tam giác ABC có;

góc A+ góc B+ góc C =180* (3)

từ (1) , (2) và (3) => góc A > 60*

8 tháng 3 2017

ui cha

16 tháng 7 2020

A A A B B B C C C D D D E E E N N N O O O I I I H H H M M M

a) Xét \(\Delta_vMDB\) và \(\Delta_vNEC\) có :

BD = CE(đầu đề ghi BD = BE là sai rồi nhá)

\(\widehat{B}=\widehat{C}\)(tam giác ABC cân tại A)

=> \(\Delta_vMDB=\Delta_vNEC\)(cgv - gn)

=> DM = EN(hai cạnh tương ứng)

b) Xét \(\Delta_vMDI\) và \(\Delta_vNEI\)có :

DM = EN(theo câu a)

\(\widehat{MDI}=\widehat{NEI}\)(đối đỉnh)

=> \(\Delta_vMDI=\Delta_vNEI\left(cgv-gn\right)\)

=> IM = IN(hai cạnh tương ứng)

=> BC cắt MN tại I

=> I là tđ của MN

c) Gọi H là chân đường vuông góc kẻ từ A xuống BC

Xét \(\Delta_vAHB\) và \(\Delta_vAHC\)có :

AB = AC(tam giác ABC cân tại A)

AH chung

=> \(\Delta_vAHB=\Delta_vAHC\left(ch-cgv\right)\)

=> \(\widehat{HAB}=\widehat{HAC}\)

Gọi O là giao điểm của AH với đường thẳng vuông góc với MN kẻ từ I 

Xét tam giác OAB và tam giác OAC có :

OA chung

AB = AC(tam giác ABC cân tại A)

góc B = góc C(tam giác ABC cân tại A)

=> tam giác OAB = tam giác OAC(c.g.c)

=> góc OBC = góc OCA (1)

Xét tam giác vuông OIM và tam giác vuông OIN có :

OI chung

IM = IN(theo câu b)

=> tam giác vuông OIM = tam giác vuông OIN(hai cạnh góc vuông)

=> OM = ON(hai cạnh tương ứng)

Xét tam giác OBM và tam giác OCN có :

OM = ON(cmt)

OB = OC(tam giác OAB = tam giác OAC)

BM = CN(tam giác MDB = tam giác NEC)

=> tam giác OBM = tam giác OCN(c.c.c)

=> góc OBM = góc OCM  (2)

Từ (1) và (2) => góc OCA = góc OCN = 90 độ , do đó \(OC\perp AC\)

Vậy điểm O cố định

Câu a, DM = EN chứ k phải DM = ED

16 tháng 7 2020

AB=AC mà

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

7 tháng 3 2018

(Cái này là mình giải trong trường hợp AM là tia đối của AB nhé)

a)  Tam giác ABC cân tại A => ABC= ACB

Mà ACB= ECN(đối đỉnh) => ABC= ECN

Xét tam giác BMD và tam giác CNE có :

BDM=CEN(=900);BD=CE(GT);ABC=ECN(chứng minh trên)

Do đó tam giác BMD=tam giác CNE(g.c.g)=>MD=NE(2 cạnh tương ứng) (đpcm)

b)Vì MDE=CEN(=900)=>MD//EN(Do có 1 cặp góc bằng nhau ở vị trí SLT)

=>DMN=ENM(cặp góc SLT)

Xét tam giác DMI và tam giác ENI có :

DMN=ENM(c/m trên);MD=NE(đã c/m ở câu a);BMD=IEN(=900)

Do đó tam giác DMI= tam giác ENI(g.c.g)=>MI=NI(2 cạnh tương ứng)

Mà I nằm giữa M và N => I là TĐ của MN 

Hay BC cắt MN tại TĐ I của MN.

(câu c mk ko bít làm)