Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)giải
+)AB < BC => góc B < góc A (1)
+)xét tam giác ABC có;
AB = AC (giả thiết)
=>tam giác ABC cân tại A
=>góc B = góc C (2)
+) xét tam giác ABC có;
góc A+ góc B+ góc C =180* (3)
từ (1) , (2) và (3) => góc A > 60*
A A A B B B C C C D D D E E E N N N O O O I I I H H H M M M
a) Xét \(\Delta_vMDB\) và \(\Delta_vNEC\) có :
BD = CE(đầu đề ghi BD = BE là sai rồi nhá)
\(\widehat{B}=\widehat{C}\)(tam giác ABC cân tại A)
=> \(\Delta_vMDB=\Delta_vNEC\)(cgv - gn)
=> DM = EN(hai cạnh tương ứng)
b) Xét \(\Delta_vMDI\) và \(\Delta_vNEI\)có :
DM = EN(theo câu a)
\(\widehat{MDI}=\widehat{NEI}\)(đối đỉnh)
=> \(\Delta_vMDI=\Delta_vNEI\left(cgv-gn\right)\)
=> IM = IN(hai cạnh tương ứng)
=> BC cắt MN tại I
=> I là tđ của MN
c) Gọi H là chân đường vuông góc kẻ từ A xuống BC
Xét \(\Delta_vAHB\) và \(\Delta_vAHC\)có :
AB = AC(tam giác ABC cân tại A)
AH chung
=> \(\Delta_vAHB=\Delta_vAHC\left(ch-cgv\right)\)
=> \(\widehat{HAB}=\widehat{HAC}\)
Gọi O là giao điểm của AH với đường thẳng vuông góc với MN kẻ từ I
Xét tam giác OAB và tam giác OAC có :
OA chung
AB = AC(tam giác ABC cân tại A)
góc B = góc C(tam giác ABC cân tại A)
=> tam giác OAB = tam giác OAC(c.g.c)
=> góc OBC = góc OCA (1)
Xét tam giác vuông OIM và tam giác vuông OIN có :
OI chung
IM = IN(theo câu b)
=> tam giác vuông OIM = tam giác vuông OIN(hai cạnh góc vuông)
=> OM = ON(hai cạnh tương ứng)
Xét tam giác OBM và tam giác OCN có :
OM = ON(cmt)
OB = OC(tam giác OAB = tam giác OAC)
BM = CN(tam giác MDB = tam giác NEC)
=> tam giác OBM = tam giác OCN(c.c.c)
=> góc OBM = góc OCM (2)
Từ (1) và (2) => góc OCA = góc OCN = 90 độ , do đó \(OC\perp AC\)
Vậy điểm O cố định
Câu a, DM = EN chứ k phải DM = ED
(Cái này là mình giải trong trường hợp AM là tia đối của AB nhé)
a) Tam giác ABC cân tại A => ABC= ACB
Mà ACB= ECN(đối đỉnh) => ABC= ECN
Xét tam giác BMD và tam giác CNE có :
BDM=CEN(=900);BD=CE(GT);ABC=ECN(chứng minh trên)
Do đó tam giác BMD=tam giác CNE(g.c.g)=>MD=NE(2 cạnh tương ứng) (đpcm)
b)Vì MDE=CEN(=900)=>MD//EN(Do có 1 cặp góc bằng nhau ở vị trí SLT)
=>DMN=ENM(cặp góc SLT)
Xét tam giác DMI và tam giác ENI có :
DMN=ENM(c/m trên);MD=NE(đã c/m ở câu a);BMD=IEN(=900)
Do đó tam giác DMI= tam giác ENI(g.c.g)=>MI=NI(2 cạnh tương ứng)
Mà I nằm giữa M và N => I là TĐ của MN
Hay BC cắt MN tại TĐ I của MN.
(câu c mk ko bít làm)