Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M P N E F
Ta có M, N, P là trung điểm của AB; AC; BC nên
MN là đường trung bình của tg ABC => MN//BC
NP là đường trung bình của tg ABC => NP//AB
MP là đường trung bình của tg ABC => MP//AC
Xét tg PMD có
PD=PM => tg PMD cân tại P \(\Rightarrow\widehat{PMD}=\widehat{PDM}\) (góc ở đáy tg cân)
Mà MN//BC (cmt) \(\Rightarrow\widehat{NMD}=\widehat{PDM}\) (góc so le trong)
\(\Rightarrow\widehat{PMD}=\widehat{NMD}\) => MD là phân giác của \(\widehat{NMP}\) (1)
Xét tg PNE có
PE=PN => tg PNE cân tại P \(\Rightarrow\widehat{PNE}=\widehat{PEN}\) (góc ở đáy tg cân)
Mà MN//BC (cmt) \(\Rightarrow\widehat{MNE}=\widehat{PEN}\) (góc so le trong)
\(\Rightarrow\widehat{PNE}=\widehat{MNE}\) => NE là phân giác của \(\widehat{MNP}\) (2)
Xét tg NFP có
NF=PE=PN => tg NFP cân tại N\(\Rightarrow\widehat{NPF}=\widehat{NFP}\) (góc ở đáy tg cân)
Mà MP//AC (cmt) \(\Rightarrow\widehat{MPF}=\widehat{NFP}\) (góc so le trong)
\(\Rightarrow\widehat{NPF}=\widehat{MPF}\) => PE là phân giác của \(\widehat{MPN}\) (3)
Xét tg DEF
Từ (1) (2) (3) => DM; NE; PF đồng quy (trong tg 3 đường phân giác đông quy)
a: Xét tứ giác APCQ có
N là trung điểm của AC
N là trung điểm của PQ
Do đó: APCQ là hình bình hành
Suy ra: AQ//PC
hay AQ//BC(1)
Xét tứ giác AEBP có
M là trung điểm của AB
M là trung điểm của PE
Do đó: AEBP là hình bình hành
Suy ra: AE//BP
hay AE//BC(2)
Từ (1) và (2) suy ra E,A,Q thẳng hàng