Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I D E F N M P Q 1 1
Không mất tính tổng quát , giả sử AB < AC ( bỏ qua trường hợp đơn giản AB = AC )
Dễ thấy P là điểm chính giữa \(\widebat{EF}\) nên D,N,P thẳng hàng
Cần chứng minh \(\widehat{IMC}=\widehat{PDC}\)
Ta có : \(\widehat{IMC}=\widehat{MIB}+\widehat{B_1}=\frac{1}{2}\widehat{BIC}+\widehat{B_1}=\frac{1}{2}\left(180^o-\widehat{B_1}-\widehat{C_1}\right)+\widehat{B_1}\)
\(=\frac{1}{2}\left(180^o-\frac{\widehat{ABC}}{2}-\frac{\widehat{ACB}}{2}\right)+\frac{\widehat{ABC}}{2}=90^o+\frac{\widehat{ABC}}{4}-\frac{\widehat{ACB}}{4}\)
\(\widehat{PDC}=\widehat{PDE}+\widehat{EDC}=\frac{1}{2}\widehat{EDF}+\widehat{EDC}\)\(=\frac{1}{2}\left(180^o-\widehat{FDB}-\widehat{EDC}\right)+\widehat{EDC}\)
\(=90^o-\frac{\widehat{FDB}}{2}+\frac{\widehat{EDC}}{2}=90^o-\frac{90^o-\widehat{B_1}}{2}+\frac{90^o-\widehat{C_1}}{2}\)
\(=90^o+\frac{\widehat{ABC}}{4}-\frac{\widehat{ACB}}{4}\)
\(\Rightarrow\widehat{IMC}=\widehat{PDC}\Rightarrow IM//ND\)
b) Theo câu a suy ra \(\widehat{MID}=\widehat{IDP}\)
Mà \(\Delta PID\)cân tại I ( do IP = ID ) nên \(\widehat{IPD}=\widehat{IDP}\)
Suy ra \(\widehat{MID}=\widehat{IPD}=\widehat{QPN}\)
\(\Rightarrow\Delta IDM\approx\Delta PQN\left(g.g\right)\)
c) từ câu b \(\Rightarrow\frac{IM}{PN}=\frac{ID}{PQ}=\frac{IP}{PQ}\)( 1 )
Theo hệ thức lượng, ta có : \(IQ.IA=IE^2=IP^2\)
Do đó : \(\frac{QP}{IP}=1-\frac{IQ}{IP}=1-\frac{IP}{IA}=\frac{PA}{IA}\)
Suy ra \(\frac{IP}{QP}=\frac{IA}{PA}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{IM}{PN}=\frac{IA}{PA}\)kết hợp với IM // PN suy ra A,M,N thẳng hàng
Tự vẽ hình lấy chứ hình nó khó vẽ trên này lắm thông cảm
a) P và Q là tâm đường tròn nội tiếp các tam giác đồng dạng AHB và CHA nên
\(\frac{HP}{HQ}=\frac{AB}{AC}\)nên \(\Delta HPQ~\Delta ABC\left(c-g-c\right)\)
b) Từ câu a suy ra \(\widehat{HPQ}=\widehat{C}\)mà \(\widehat{C}=\widehat{A_1}\)
Nên \(\widehat{HPQ}=\widehat{A_1}\)( 1 )
Tứ giác HPKQ có \(\widehat{PHQ}=\widehat{PKQ}=90^o\)nên là tứ giác nội tiếp, suy ra \(\widehat{HPQ}=\widehat{HKP}\)( 2 )
Từ (1) VÀ (2) suy ra \(\widehat{A_1}=\widehat{HKP}\)do đó KP // AB. Chứng minh tương tự, KQ // AC.
c) Ta có : \(\widehat{C}=\widehat{HKP}=\widehat{MKP}\)tự chứng minh \(\widehat{MKP}=\widehat{M_1}\)(sử dụng kết quả ở câu b).
d) Ta có : \(\widehat{A_1}=\widehat{M_1}\left(=\widehat{C}\right)\)nên KM = KA. Tương tự KP =KA. Do đó năm điểm A, M, P, Q, N thuộc đường tròn (K; KA).
e) Từ câu a suy ra \(\widehat{HQP}=\widehat{C}\)nên HQEC là tứ giác nội tiếp, do đó \(\widehat{QEA}=\widehat{QHC}=45^o\)
Tam giác ADE có : \(\widehat{E}=45^o\)
\(\Rightarrow\) ADE là tam giác vuông cân.
à câu cuối còn một cách nữa :)
Chứng minh \(BP\perp AQ\)tương tự ta cũng chứng minh \(CQ\perp AP\)
\(\Rightarrow\)\(AO\perp PQ\)(O là giao điểm của BP và CQ). Tam giác ADE có AO là tia phân giác góc A và \(AO\perp DE\)
\(\Rightarrow\)Tam giác AED vuông cân ( đpcm )