Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua D vẽ đường thẳng song song với AC cắt AB ở K
Ta có AD là đường phân giác trong của \(\Delta ABC\)
\(\Rightarrow\frac{AC}{AB}=\frac{CD}{DB}\)(theo tính chất đường phân giác trong tam giác)
CE là đường phân giác trong của \(\Delta ABC\)nên \(\frac{AC}{BC}=\frac{EA}{EB}\)(theo tính chất đường phân giác trong tam giác)
Mà AB > BC (gt) nên \(\frac{AC}{AB}< \frac{AC}{BC}\Rightarrow\frac{DC}{DB}< \frac{EA}{EB}\)(1)
\(\Delta ABC\)có \(DK//AC\)nên \(\frac{DC}{DB}=\frac{KA}{KB}\)(2)
Từ (1) và (2) suy ra \(\frac{KA}{KB}< \frac{EA}{EB}\)
\(\Rightarrow\frac{KA}{KB}+1< \frac{EA}{EB}+1\Rightarrow\frac{AB}{KB}< \frac{AB}{EB}\Rightarrow KB>EB\)
Do đó K không trùng E. Do vậy DE cắt AC, gọi M là giao điểm của DE và AC
Ta có \(\widehat{ADE}>\widehat{DAM}\)(\(\widehat{ADE}\)là góc ngoài của \(\Delta DAM\))
Mà \(\widehat{DAM}=\widehat{DAE}\)(gt) \(\Rightarrow\widehat{ADE}>\widehat{DAE}\)
\(\Rightarrow AE>DE\)(quan hệ giữa góc và cạnh đối diện trong tam giác) (3)
Mặt khác \(\widehat{DCE}=\widehat{ECA}\left(gt\right)\)mà \(\widehat{ECA}>\widehat{CED}\)(\(\widehat{ECA}\)là góc ngoài của \(\Delta CEM\))
Do đó \(\widehat{DCE}>\widehat{CED}\Rightarrow DE>DC\)(quan hệ giữa góc và cạnh đối diện trong tam giác) (4)
Từ (3) và (4) suy ra AE > DE > DC (đpcm)