Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Tam giác BDA và tam giác CEA có :
BA = CA (gt)
góc A : chung
góc BDA = góc CEA (=90o)
=> Tam giác BDA = tam giác CEA
=> BD = CE ( 2 cạnh tương ứng )
b,Tam giác BDA = tam giác CEA (cmt) => AD=AE ( 2 cạnh tương ứng)
Ta có AB = AC (gt) , AE=AD(cmt) => AB - AE = AC - AD hay EB= DC
Tam giác BED và tam giác CDB có
BD = CE (cmt)
BC : cạnh chung
EB = DC (cmt)
=> tam giác BEC =tam giác CDB
=> góc BCE = góc CBD
Vì AB = AC => tam giác ABC cân tại A => góc B = góc C
mà góc BCE = góc CBD => góc EBD = góc DCE hay góc EBO = góc DCO
\(\Delta OEB\)và \(\Delta ODC\)có :
\(\widehat{OEB}=\widehat{ODC}\left(=90^o\right)\)
EB = DC (cmt)
\(\widehat{EBO}=\widehat{DCO}\left(cmt\right)\)
\(\Rightarrow\Delta OEB=\Delta ODC\left(g.c.g\right)\)
c,\(\Delta EBO=\Delta DCO\left(cmt\right)\Rightarrow BO=CO\)(2 cạnh tương ứng)
\(\Delta OAB\)và \(\Delta OAC\)có
AB = AC (gt)
AO : cạnh chung
OB = OC (gt)
\(\Rightarrow\Delta OAB=\Delta OAC\left(c.c.c\right)\Rightarrow\widehat{OAB}=\widehat{OAC}\)( 2 góc t.ứng)
AO là tia p/g của góc BAC
d,Đề sai nha
Ta có hình vẽ:
A B C E D O
a/ Xét tam giác ABD và tam giác ACE có:
A: góc chung
AB = AC (GT)
góc D = góc E = 900 (GT)
Vậy tam giác ABD = tam giác ACE ( cạnh huyền góc nhọn)
=> BD = CE (2 cạnh tương ứng)
b/ Ta có: góc D = góc E = 900 (GT) (1)
Ta có: AB = AC (GT)
AE = AD (do tam giác ABD = tam giác ACE)
=> BE = CD (2)
Ta có: góc EBO = góc DCO (do tam giác ABD = tam giác ACE) (3)
Từ (1), (2), (3) => tam giác OEB = tam giác ODC
c/ Xét tam giác ABO và tam giác ACO có:
AB = AC (GT)
AO: chung
BO = CO (tam giác OEB = tam giác ODC)
=> tam giác ABO = tam giác ACO (c.c.c)
=> góc BAO = góc CAO (2 góc tương ứng)
=> AO là tia phân giác của góc BAC (đpcm)
A B C E D O
a) Xét 2Δ vuông AEC và ADB, ta có:
AB=AC (gt)
Chung \(\widehat{A}\)
Do đó: ΔAEC=ΔADB (ch-gn)
=> BD=CE
A B C E D O xét Δ ABC có AB=AC(gt)
=> ΔABC cân tại A
Xét tam giác vuông BDC và tam giác vuông CEB có
BC cạnh chung
góc BCD = góc CBE ( Δ ABC cân cmt)
=> Δ BDC= ΔCEB ( chgn)
=> BD=CE (cctư)
b) ta có Δ BDC= ΔCEB (cmt)
=> EB=DC (cctư)
mặt khác ta có
góc DOC + góc OCD =90o (1)
góc EOB + góc OBE = 90o (2)
mà góc DOC = góc EOB (đđ) (3)
(1),(2)&(3) => góc DCO = góc EBO
Xét Δ vuông OEB và Δ vuông ODC có
EB=DC(cmt)
góc DCO = góc EBO
=> Δ OEB = Δ ODC ( cgvgnk)
C) Xét tam giác ABC có
BD cắt CE tại O
mà BD là đường cao
CE là đường cao
=> O là trực tâm của Δ ABC
=> AO là đường cao của Δ ABC từ góc A tới cạnh BC
Xét tam giác cân ABC có
AO là đường cao
=> cũng vừa là đường phân giác góc BCA (tính chất tam giác cân)
ĐPCM
a) t/g ABC cân tại A
=> ABC = ACB ( tính chất tam giác cân)
Xét t/g DCB vuông tại D và tam giác EBC vuông tại E có:
BC là cạnh chung
DCB = EBC (cmt)
Do đó, t/g DCB = t/g EBC ( cạnh huyền - góc nhọn)
=> BD = CE (2 cạnh tương ứng) (đpcm)
b) t/g DCB = t/g EBC (câu a)
=> CD = BE (2 cạnh tương ứng)
DBC = ECB (2 góc tương ứng)
Mà ABC = ACB (câu a)
=> ABC - DBC = ACB - ECB
=> ABD = ACE
Xét t/g EBO vuông tại E và t/g DCO vuông tại D có:
BE = CD (cmt)
EBO = DCO (cmt)
Do đó, t/g EBO = t/g DCO ( cạnh góc vuông và góc nhọn kề)
=> OB = OC (2 cạnh tương ứng) (1)
OE = OD (2 cạnh tương ứng) (2)
Từ (1) và (2) => đpcm
c) Dễ thấy, t/g AOC = t/g AOB (c.c.c)
=> OAC = OAB (2 góc tương ứng)
=> AO là phân giác CAB (đpcm)
A B C E D O
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có:
AB = AC (gt)
Góc A chung
=> ΔABD = ΔACE ( cạnh huyền - góc nhọn )
=> BD = CE ( 2 cạnh tương ứng )
b) Vì ΔABD = ΔACE nên góc ABD = ACE ( 2 góc tương ứng ) và AD = AE ( 2 cạnh tương ứng )
Ta có: AD + DC = AC
AE + EB = AB
mà AD = AE (cm trên); AC = AB (gt)
=> DC = EB
Xét ΔEOB và ΔDOC có:
góc ABD = ACE (cm trên)
EB = DC (cm trên)
góc OEB = ODC (= 90)
=> ΔEOB = ΔDOC (g.c.g)
=> OE = OD ( 2 cạnh tương ứng ) ; OB = OC ( 2 cạnh tương ứng )
c) Do ΔEOB = ΔĐỌC nên EO = DO ( 2 cạnh tương ứng )
Xét ΔAOE vuông tại E và ΔAOD vuông tại D có:
OE = DO ( cm trên )
AE = AD (câu b)
=> ΔAOE = ΔAOD ( cạnh góc vuông )
=> góc OAE = OAD ( 2 góc tương ứng )
Do đó AO là tia phân giác của góc EAD hay AO là tia pg của góc BAC.
Chúc học tốt Cathy Trang
Câu 2:
\(P=\left|x-2015\right|+\left|x+2016\right|\)
\(P=\left|2015-x\right|+\left|x+2016\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(P\ge\left|2015-x+x+2016\right|=4031\)
Dấu bằng xảy ra khi và chỉ khi
\(\left(2015-x\right)\left(x+2016\right)\ge0\)
\(\Leftrightarrow-2016\le x\le2015\)
bạn làm câu 1 mình với