K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2022

Ta có:\(\widehat{MBC}=\widehat{NCB}\) ( 2 tia phân giác của 2 góc bằng nhau )

=> Tam giác KBC cân

=> KB = KC

Xét tam giác MBC và tam giác NCB, có:

BC: cạnh chung

\(\widehat{MBC}=\widehat{NCB}\)

^B = ^C

Vậy tam giác MBC = tam giác NCB ( g.c.g )

=> BM = CN

Mà KB = KC

=> KM = KN

=> Tam giác KMN cân tại K

24 tháng 3 2022

thankss!

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AHchung

Do đo: ΔAHB=ΔAHC

b: HB=HC=BC/2=3cm

=>AH=4cm

c: Xét ΔABM và ΔACN có

góc ABM=góc ACN

AB=AC
góc BAM chung

Do đó: ΔABM=ΔACN

Suy ra BM=CN

Xét ΔNBC và ΔMCB có

NB=MC

NC=MB

BC chung

Do đo: ΔNBC=ΔMCB

Suy ra: góc KBC=góc KCB

=>ΔKBC cân tại K

=>KB=KC

=>KN=KM

hay ΔKNM cân tại K

d: Xét ΔABC có AN/AB=AM/AC

nên NM//BC

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

6 tháng 5 2018

â)Ta có :  AB = AC =10 cm (gt)

=> tam giác ABC cân tại A (2 cạnh bên = nhau )

b) Xét tam giác AHB va tam giac AHC ,co : 

\(\widehat{AHB}=\widehat{AHC}=90^O\) ( AH là đường cao ) 

AB =AC =10 cm (gt )

AH là cạnh chung 

Do đo : tam giác AHB =tam giác AHC ( cạnh huyền - cạnh góc vuông ) 

=>\(\widehat{BAH}=\widehat{CAH}\)( hai góc tương ứng ) 

=>AH là tia phân giác của góc A 

c)Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác 

Nên :H là trung điểm của BC

=>BH = CH  = \(\frac{BC}{2}\)=12/2 = 6 cm

6 tháng 5 2018

TRẢ LỜI TIẾP CÂU Ở TRÊN NHA  ( HỒI NÃY BẤM NHẦM GỬI TRẢ LỜI ) 

b) Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác  

Nên : H là trung điểm của BC

=> BH =CH =\(\frac{BC}{2}=\frac{12}{2}=6cm\)

Xét : tam giác BMH và tam giác HCN , co :

 BH = CH = 6cm ( chứng minh trên ) 

\(\widehat{M}=\widehat{N}=90^o\left(gt\right)\)

\(\widehat{B}=\widehat{C}\) (Vì tam giác ABC cân tại A nên hai góc ở đáy = nhau ) 

Do do:tm giác BHM = tam giác HCN

đ) Áp dụng định lý pytago vào tam giác  AHC vuông tại H 

\(AH^2=AC^2-HC^2\) =\(10^2-6^2\)=\(100-36=64\)

=>\(AH=\sqrt{64}=8cm\)  OK CHÚC BẠN HỌC TỐT 

15 tháng 3 2020

Bạn ơi có gải ko đăng lên đi

12 tháng 4 2020

1.a)
Vì AB=AC => Tam giác ABC cân
b)
Vì △ABC cân
=> góc ABC=góc ACB (1)
góc AHC=góc AHB=90 độ (2)
AB=AC (gt) (3)
Từ (1)(2)(3) => △AHB = △AHC (cạnh huyền-góc nhọn)
=> góc BAH = góc CAH
=> AH là tia phân giác của góc A
c) Vì góc ABC = góc ACB
=> góc MBH = góc NCH
góc BMH = góc HNC =90 độ
=> △BHM = △HCN (g.g)
d) Ta có: AH.BC=AB.AC
=> AH.12=10.10
=> AH = 25/3 (cm)

24 tháng 1 2020

A B C K I M N H

  GT  

 △ABC cân tại A. AB = AC = 13cm. BC = 24cm.

 AH ⊥ BC (H \in BC). BK = CI. BM ⊥ AK. CN ⊥ AI

  KL

 a, △AHC = △AHB

 b, AH = ?

 c, △ABK = △ACI

 d, △MBK = △NCI

Bài giải:

a, Vì △ABC cân tại A (gt) => AB = AC và ABC = ACB

Xét △AHC vuông tại H và △AHB vuông tại H

Có: AH là cạnh hcung

       AC = AB (cmt)

=> △AHC = △AHB (ch-cgv)

b, Ta có: BC = BH + HC

Mà BC = 24 cm

=> BH + HC = 24 cm

Mà HC = HB (△AHC = △AHB)

=> HC = HB = 24 : 2 = 12 (cm)

Xét △ABH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)

=> AH2 + 122 = 132 => AH2 = 25 => AH = 5

c, Ta có: ABK + ABC = 180o (2 góc kề bù)

ACI + ACB = 180o (2 góc kề bù)

Mà ABC = ACB (cmt)

=> ABK = ACI

Xét △ABK và △ACI 

Có: AB = AC (cmt)

    ABK = ACI (cmt)

      BK = CI (gt)

=> △ABK = △ACI (c.g.c)

d, Xét △MBK vuông tại M và △NCI vuông tại N

Có: BK = CI (gt)

    MKB = NIC (△ABK = △ACI)

=> △MBK = △NCI (ch-gn)

10 tháng 4 2020

.  + vì tam giác ABC là tam giác cân

=> AB=AC ( hai cạnh bên bằng nhau)

Lại có: vì góc AHC bằng 90(gt) (1)

            Mà: AHBAHC= 180( hai góc kề bù)

           Từ (1) và (2) ta suy ra:

           AHB= 90và tam giác AHB là tam giác vuông

a) xét tam giác vuông ABH và tam giác ACH:

                  AB= AC ( cmt)

           Và AHBAHC= 90( cmt)

      => tam giác ABH= tam giác ACH( ch-gv)

      Do đó: BH = CH ( hai cạnh tương ứng)

     Vậy: H là trung điểm của BC ( đpcm)

( mình chỉ làm được câu a thoii, sorry bạn nhiều nha) 😍😘

CHÚC BẠN HỌC TỐT NHA!

12 tháng 4 2020

a) Xét \(\Delta AHB\)và \(\Delta AHC\)có :

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

\(AB=AC\)\((\Delta ABC\)cân \()\)

AH chung

\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-cgv\right)\)

\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )

\(\Rightarrow\)H là trung điểm của BC

b) Xét \(\Delta MBH\)và \(\Delta NCH\)có :

\(BM=CN\left(gt\right)\)

\(\widehat{B}=\widehat{C}\)\((\Delta ABC\)cân \()\)

\(BH=HC\left(cmt\right)\)

\(\Rightarrow\Delta MBH=\Delta NCH\left(c.g.c\right)\)

\(\Rightarrow\widehat{BMH}=\widehat{CNH}\)( 2 góc tương ứng )

mà \(\widehat{BMH}=90^o\left(gt\right)\)

\(\Rightarrow\widehat{CNH}=90^o\)

\(\Rightarrow HN\perp AC\)

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0
26 tháng 2 2020

a, Xét △BAH vuông tại H và △CAH vuông tại H

Có: AH là cạnh chung

       AB = AC (gt)

=> △BAH = △CAH (ch-cgv)

=> BH = CH (2 cạnh tương ứng)

Mà H nằm giữa B, C

=> H là trung điểm BC

Ta có: BH + CH = BC => BH + BH = 12 => 2BH = 12 => BH = 6 (cm)

Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)

=> AH2 = AB2 - BH2  

=> AH2 = 102 - 62 

=> AH2 = 64

=> AH = 8 (cm)

b, Ta có: MH = MB + BH và HN = HC + CN

Mà BH = HC (cmt) ; MB = CN (gt)

=> MH = HN

Xét △MHA vuông tại H và △NHA vuông tại H

Có: AH là cạnh chung

      MH = HN (cmt)

=> △MHA = △NHA (2cgv)

=> HMA = HNA (2 góc tương ứng)

Xét △AMN có: AMN = ANM (cmt) => △AMN cân tại A

c, Xét △MBE vuông tại E và △NCF vuông tại F

Có: EMB = FNC (cmt)

      MB = CN (gt)

=> △MBE = △NCF (ch-gn)

=> MBE = NCF (2 góc tương ứng)

d, Vì △MHA = △NHA (cmt) => MAH = NAH (2 góc tương ứng)

=> AH là phân giác của MAN

Ta có: AE + EM = AM và AF + FN = AN 

Mà EM = FN (△MBE = △NCF) ; AM = AN (△AMN cân tại A)

=> AE = AF

Xét △EAK vuông tại E và △FAK vuông tại F

Có: AK là cạnh chung

       AE = AF (cmt)

=> △EAK = △FAK (ch-cgv)

=> EAK = FAK (2 góc tương ứng)

=> AK là phân giác EAF => AK là phân giác MAN

Mà AH là phân giác của MAN

=> AK ≡ AH 

=> 3 điểm A, H, K thẳng hàng