Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{2AB}{AB}=2\\\dfrac{AE}{AC}=\dfrac{2AC}{AC}=2\end{matrix}\right.\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét tam giác ADE và tam giác ABC ta có:
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(cmt\right)\)
Góc DAE = Góc BAC (đối đỉnh)
\(\Rightarrow\Delta ADE\sim\Delta ABC\left(c-g-c\right)\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{ED}{BC}=\dfrac{AE}{AC}\)
Xét hai \(\Delta ABC\)và \(ADE\)có:
\(AB=AD\left(gt\right)\)
\(\widehat{BAC}=\widehat{DAE}\)(vì hai góc đối đỉnh)
\(AC=AE\left(gt\right)\)
\(\Rightarrow\Delta ABC=\Delta ADE\left(c-g-c\right)\)
b) \(\Delta ABC=\Delta ADE\left(c-g-c\right)\)
\(\Rightarrow\widehat{ACB}=\widehat{AED}\)(hai góc tương ứng)
Mà hai góc này là vị trí so le nên
\(DE\)// \(BC\)
đpcm.
c) đang nghĩ
a ) Xét \(\Delta\)ABC và \(\Delta\)ADE có :
- AB = AD ( giả thiết )
- AC = AE ( giả thiết )
- BÂC = DÂE ( đối đỉnh )
\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)ADE ( c - g - c ) ( đpcm )
b )Ta có : \(\Delta\)ABC = \(\Delta\)ADE ( cm câu a )
\(\Rightarrow\)DÊA = Góc ACB ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\)ED // BC ( đpcm )
c ) #Theo mình câu c là M là trung điểm BE và N là trung điểm DC nhé#
Xét \(\Delta\)BEC có :
- M là trung điểm BE
- A là trung điểm CE
\(\Rightarrow\)AM là đường trung bình của \(\Delta\)BEC
\(\Rightarrow\)AM // BC ( 1 )
Xét \(\Delta\)BDC có :
- A là trung điểm BD
- N là trung điểm DC
\(\Rightarrow\)AN là đường trung bình của \(\Delta\)BDC
\(\Rightarrow\)AN // BC ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)M , A , N thẳng hàng ( Theo tiên đề Ơ - clit )
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a: Xét ΔABC và ΔCBM có
BA/BC=BC/BM
góc B chung
=>ΔABC đồg dạng với ΔCBM
=>AC/CM=BC/BM=2/3
=>10/CM=2/3
=>CM=15cm
b: ΔABC đồng dạng với ΔCBM
=>góc ACB=góc CMB
mà góc CMB=góc ACM
nên góc ACB=góc ACM
=>CA là phân giác của góc MCB
Tự vẽ hình.
a) Xét tam giác OAB có AB // CD
⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)
=> OC = 4cm, DC = 6cm
Vậy OC = 4cm và DC = 6cm
b) Xét tam giác FAB có DC // AB
⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )
c) Theo (1), ta đã có:
OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)
Vì MN // AB mà AB // DC => MN // DC
Xét tam giác ADC có MO// DC
⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)
CMTT : ONDC=OBDBONDC=OBDB (4)
Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )
bạn ơi cái này dựa vào 2 tam giác bằng nhau và các trường hợp nhe
1,3: Xet ΔADE và ΔACB có
AD/AC=AE/AC
góc DAE=góc CAB
=>ΔADE đồng dạng vói ΔACB
=>góc ADE=góc ACB
=>DE//BC
2: DE/CB=AD/AC=3/10