K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 3 2020

Lời giải:

a) Ta thấy:

$6^2+8^2=10^2$

$\Leftrightarrow AB^2+AC^2=BC^2$

Theo định lý Pitago đảo suy ra $ABC$ là tam giác vuông tại $A$

b)

Do tổng số đo 3 góc trong 1 tam giác bằng $180^0$ nên áp dụng với tam giác $BIC$ và $ABC$ ta có:

$\widehat{BIC}=180^0-(\widehat{IBC}+\widehat{ICB})$

$=180^0-(\frac{\widehat{B}{2}}+\frac{\widehat{C}}{2})$

$=180^0-\frac{\widehat{B}+\widehat{C}}{2}=180^0-\frac{180^0-\widehat{A}}{2}=180^0-\frac{180^0-90^0}{2}=180^0-45^0=135^0$

AH
Akai Haruma
Giáo viên
12 tháng 3 2020

Hình vẽ:

Ôn tập chương I

4 tháng 8 2016

vậy câu c làm sao bạn ? mik làm dc 2 câu ấy chỉ lưa câu c thôi... bạn giúp mik được ko ?

 

3 tháng 5 2016

a)Xét tam giác ACD và tam giác ECD(đều là vuông)banh

         ECD=DCA(Vì CD là p/giác)

          CD là cạnh chung

\(\Rightarrow\)tam giác ACD=tam giác ECD(cạnh huyền góc nhọn)

b)Vì tam giác ACD=tam giác ECD(cạnh huyền góc nhọn)

\(\Rightarrow\)AD=DE(cạnh cặp tương ứng)

\(\Rightarrow\)D cách đều hai mút của AE

\(\Rightarrow\)CD là đường trung trực của AE

       Do đó CI\(\perp\)AE

\(\Rightarrow\)Tam giác CIE là tam giác vuông

c)Vì AD=DE(câu b)

Mà tam giác BDE là tam giác vuông(tại E)

\(\Rightarrow\)DE<BD(cạnh góc vuông nhỏ hơn cạnh huyền)

\(\Rightarrow\)AD<BD(đpcm)

d)Kéo dài BK cắt AC tại O

Vì BK\(\perp\)CD(gt)

\(\Rightarrow\)CK là đường cao thứ nhất của tam giác OBC(1)

Vì tam giác ABC vuông tại A

Nên BA\(\perp\)AC

\(\Rightarrow\)BA là đường cao thứ hai của tam giác OBC(2)

Theo đề bài ta có DE\(\perp\)BC

Nên DE là đường cao thứ ba của tam giác OBC(3)

      Từ (1),(2) và (3) suy ra:

Ba đường cao giao nhau tại một điểm trùng với điểm D

\(\Rightarrow\) 3 đường thẳng AC;DE;BK đồng quy(đpcm)

28 tháng 11 2016

mọi người rảnh thì vào giải hộ tớ bài toán cái

30 tháng 4 2017

Hỏi đáp Toán

30 tháng 4 2017

ừm, thật ra bài này chỉ là ôn tập trong phần ôn tập , của ôn tập của mk. cảm ơn

15 tháng 5 2021

Lớp 10??

30 tháng 3 2021

Add: Tr Ph Thảo (hpthaoo)

18 tháng 5 2021

A B(5;1) C D E F(4;3) G d:x+2y-18=0

Gọi AF giao BC tại G. Theo ĐL Thales thì \(\frac{FA}{FG}=\frac{ED}{EB}=1\), suy ra F là trung điểm AG

Dễ thấy tam giác ABG cân tại B,do đó AG vuông góc BF

Đường thẳng AG: đi qua \(F\left(4;3\right)\), VTPT \(\overrightarrow{FB}=\left(1;-2\right)\)\(\Rightarrow AG:x-2y+2=0\)

Xét hệ \(\hept{\begin{cases}x+2y-18=0\\x-2y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=5\end{cases}}\Rightarrow A\left(8;5\right)}\)

Vì F là trung điểm AG nên \(G\left(0;1\right)\)\(\Rightarrow\overrightarrow{GB}=\left(5;0\right)\)=> VTPT của BC là \(\left(0;1\right)\)

\(\Rightarrow BC:x-1=0\). Vậy \(d\left(O;BC\right)=1.\)

a: Xét (O) có

góc BEC, góc BDC đều là các góc nội tiếp chắn nửa đường tròn

=>góc BEC=góc BDC=90 độ

=>CE vuông góc AB, BD vuông góc AC

Xét ΔABC có

CE,BD là đường cao

CE cắt BD tại H

=>H là trực tâm

=>AH vuông góc BC tại F

góc BEH+góc BFH=180 độ

=>BEHF nội tiếp
b: Xét ΔHCB có CO/CB=CM/CH

nên OM//BH

=>góc COM=góc CBH

=>góc COM=góc FEC

=>góc MOF+góc FEM=180 độ

=>OMEF nội tiếp

14 tháng 12 2016

Xét tứ giác ABEC có 2 đường chéo AE và BC cắt nhau tại trung điểm M của mỗi đường nên ABEC là hình bình hành

\(\Rightarrow\begin{cases}AB=CE\left(1\right)\\AB\backslash\backslash CE\end{cases}\)

a,xét ΔABM và ΔECM có:

\(\begin{cases}MA=ME\left(gt\right)\\MB=MC\left(gt\right)\\AB=CE\left(cmt\right)\end{cases}\)

→ΔABM=ΔECM(c.c.c)

b,Xét ΔABD có BH là đường cao đồng thời là đường trung tuyến

nên ΔABD cân tại B

→BC là phân giác của \(\widehat{ABD}\)

ΔABD cân tại B →AB=BD(2)

Từ (1),(2)→BD=CE

3 tháng 5 2016

a)Xét tam giác BAD và BED(đều là ta giác vuông)

         BD là cạnh chung

          ABD=DBE(Vì BD là tia p/giác)

\(\Rightarrow\)tam giác BAD=tam giác BED(cạnh huyền góc nhọn)

\(\Rightarrow\)AB=BE(cặp cạnh tương ứng)

b)Vì tam giác BAD=tam giác BED(cạnh huyền góc nhọn)

  \(\Rightarrow\)DA=DE(cặp cạnh tương ứng)

Xét tam giác ADF và EDCđều là ta giác vuông)

     DA=DE(CMT)

     ADF=EDC(đđ)

\(\Rightarrow\)tam giác ADF=tam giác EDC(cạnh góc vuông góc nhọn)

\(\Rightarrow\)DF=DC(cặp cạnh tương ứng)

Do đó tam giác DFC cân tại D(vì DF=DC)

c)Vì DA=DE(CMT)\(\Rightarrow\)tam giác DAE can tại D

Mà ADE=FDC(đđ)

     Mà hai tam giác DAE và CDF cân 

Do đó:DAE=DEA=DFC=DCF

\(\Rightarrow\)AE//FC vì DFC=DAE