K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2015

c) Tam giác AMB cân tại M => góc ABM = góc BAM (1)

Vì MK//AB ( cùng vuông góc AB) => góc ABM = góc AMK (2)

Từ (1) và (2) => góc ABM = góc AMK => tg vuông AHB đồng dạng tg vuông AKM

d) Tg AHB đd tg AKM => AH/AK = AB/AM => AH.AM = AK.AB (3)

Mặt khác vì tg AMC cân tại M có MK là đường cao => MK là đg trung tuyến => AK = CK; AM = BM (4)

Từ (3) và (4) => AH.BM = CK.AB 

23 tháng 3 2018

c, Xét tam giác HAC và MBC có : 

\(\widehat{AHC}=\widehat{BMC}=90^O\)

Góc BCM chung 

=> tam giác HAC đồng dạng với MBC

23 tháng 3 2018

giúp mình nốt câu e đc k???

5 tháng 5 2020

hình tự vẽ nhé 

5 tháng 5 2020

ok banj

29 tháng 4 2018

a) bn lm đc rồi nên mk bỏ qua nhé

b)  Áp dụng định lý Putago vào tam giác vuông ABC ta có

        \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=21^2+28^2=1225\)

\(\Leftrightarrow\)\(BC=\sqrt{1225}=35\)cm

\(\Delta ABC\)vuông tại  \(A\)có  \(AM\)là trung tuyến

\(\Rightarrow\)\(AM=\frac{1}{2}BC=17,5\)cm

\(\Delta HBA~\Delta ABC\) (câu a)

\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AB}{BC}\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=\frac{21.28}{35}=16,8\)cm

c)  \(\Delta BAC\)có    \(EM\)\(//\)\(AC\) (cùng vuông góc với AB)

\(\Rightarrow\)\(\frac{AE}{AB}=\frac{CM}{CB}\) (1)

   \(\Delta CAB\) có   \(MF\)\(//\)\(AB\) (cùng vuông góc với AC)

\(\Rightarrow\) \(\frac{AF}{AC}=\frac{BM}{BC}\) (2)

   \(\Delta ABC\)có  \(AM\)là trung tuyến

\(\Rightarrow\)\(MB=MC\)(3)

Từ (1), (2) và (3)  suy ra:

   \(\frac{AE}{AB}=\frac{AF}{AC}\)

\(\Rightarrow\)\(EF\)\(//\)\(BC\)  (định lý Ta-lét đảo)

26 tháng 4 2021

cảm ơn ạ