Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng ĐL pi - ta - go đảo :
\(AB^2+BC^2=AC^2\)
\(< =>4.5^2+6^2=7.5^2\)
Do \(4.5^2+6^2=7.5^2\)đúng
=>ĐPCM
Áp dụng định lí Py-ta-go,ta có:
BC2=AC2+AB2
=4,52+62
=20,25+36
=56,25
mà\(\sqrt{56,25}\)=7,5
Suy ra tam giác ABC là tam giác vuông.
Ta có: 20,25+36=56,25
=>4,52+62=7,52
Hay AB2+BC2=AC2
=> Tam giác ABC vuông tại B
a: \(BC^2=7.5^2=56.25\)
\(AB^2+AC^2=4.5^2+6^2=56.25\)
Do đó: \(BC^2=AB^2+AC^2\)
b: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: Xét ΔMHC và ΔMKB có
MH=MK
\(\widehat{HMC}=\widehat{KMB}\)
MC=MB
Do đó: ΔMHC=ΔMKB
Bạn viết sai đề chỗ "kẻ AH vuông góc với AC (H thuộc BC)", phải là"vuông góc với BC.
A C B H 6cm 8cm 4,5cm
Theo định lí Py-ta-go, ta có:+) AB2 = BH2 + AH2 = 4,52 + 62 = 20,25 + 36 = 56,25 (cm)
+) BC2 = CH2 + AH2 =82 + 62 = 64 + 36 = 100 (cm)
=> AB2 + AC2 = 56,25 + 100 = 156,25 (cm)
Lại có: BC = BH + CH = 4,5 + 8 = 12,5=>BC2=12,52=156,25(cm)
Do đó: BC2 = AB2 + AC2 (=156,25)
Áp dụng định lí Py-ta-go đảo => tam giác ABC vuông tại A.
Vậy tam giác ABC vuông tại A
Trần Duy Thanh, chỗ \(12,6^2\) phải là \(12,5^2\) mới đúng
a: \(AB=\sqrt{AH^2+HB^2}=7.5\left(cm\right)\)
\(AC=\sqrt{AH^2+HC^2}=10\left(cm\right)\)
BC=HB+HC=12,5cm
b: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A