Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xet ΔMAB có MD là phân giác
nên AD/DB=AM/MB=AM/MC
Xét ΔMAC có ME là phân giác
nên AE/EC=AM/MC
=>AD/DB=AE/EC
=>DE//BC
=>ΔADE đồng dạng với ΔABC
a) △ABC có AD là đường phân giác
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{DB}{DC}\) (t/c)
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{6}{9}=\dfrac{2}{3}\Rightarrow3DB=2DC\)
Mà \(BD+CD=BC=10\)
\(\Rightarrow2BD+2CD=5BD=20\\ \Rightarrow BD=4\left(cm\right)\)
△ABC có AE là đường phân giác ngoài tại đỉnh A
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{EB}{EC}\) (T/c)
\(\Rightarrow\dfrac{EB}{EC}=\dfrac{6}{9}=\dfrac{2}{3}\Rightarrow3EB=2EC\)
Mà \(EC=EB+BC=EB+10\)
\(\Rightarrow2EB+20=2EC=3EB\\ \Rightarrow BE=20\left(cm\right)\)
b) △ABC có AD là đường phân giác trong
AE là đường phân giác ngoài tại đỉnh A
\(\Rightarrow AD\perp AE\) → △ADE vuông tại A
c) Kẻ AH ⊥ BC
\(S_{ADB}=\dfrac{AH}{2}\cdot BD\)
\(S_{ADC}=\dfrac{AH}{2}\cdot CD\)
Mà \(DB=\dfrac{2}{3}DC\)
\(\Rightarrow S_{ADB}=\dfrac{2}{3}S_{ADC}\)
Tam giác ABC có chu vi bằng 74cm, AC là cạnh lớn nhất. Đường phân giác của góc A chia cạnh BC thành hai đoạn tỉ lệ với 2:3; đường phân giác của góc C chia cạnh AB thành hai đoạn tỉ lệ với 4:5. Tính độ dài các cạnh của tam giác ABC.
AB + BC + AC = 74 (*)
Trong ∆ ABC phân giác AD → AB/AC = DB/DC = 2/3 (AC > AB)
→ AB = 2/3 . AC (1) , tương tự với phân giác CE ta suy ra
BC = 4/5 . AC (2) . Thế tất cả vào (*) ta được:
2/3 . AC + 4/5 . AC + AC = 74 → 37AC/15 = 74 → AC = 30cm
thế vào (1) và (2) ta được AB = 10cm, BC = 24cm