Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC và ΔCBM có
BA/BC=BC/BM
góc B chung
=>ΔABC đồg dạng với ΔCBM
=>AC/CM=BC/BM=2/3
=>10/CM=2/3
=>CM=15cm
b: ΔABC đồng dạng với ΔCBM
=>góc ACB=góc CMB
mà góc CMB=góc ACM
nên góc ACB=góc ACM
=>CA là phân giác của góc MCB
a,Do MN//Bc suy ra AM/AB = Mn/Bc (theo định lí ta let)
hay 3/12 = MN/16
suy ra: MN=4 cm.
còn 2 câu nữa bây giờ mk phải đi hk,tẹo tối về mk giải tiếp :)
a) Sửa đề: ΔABC\(\sim\)ΔANM
Xét ΔABC vuông tại A và ΔANM vuông tại A có
\(\dfrac{AB}{AN}=\dfrac{AC}{AM}\left(\dfrac{24}{13.5}=\dfrac{32}{18}\right)\)
Do đó: ΔABC\(\sim\)ΔANM(c-g-c)
b) Ta có: ΔABC\(\sim\)ΔANM(cmt)
nên \(\widehat{ABC}=\widehat{ANM}\)(hai góc tương ứng)
mà \(\widehat{ABC}\) và \(\widehat{ANM}\) là hai góc ở vị trí so le trong
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
Bài 3. Cho tam giác
ABC
. Trên cạnh
AC
lấy điểm
N
sao cho
2
5
CN
AN
. Trên cạnh BC lấy điểm
M
sao cho
BC xMC
và MN // AB.
Tìm x.
A. 5 B. 2,5 C. 3,5 D. 1,4
giải :
Xét tam giác ABC cân tại A có:
góc ABC = góc ACB (t/c)
mà góc MIB = góc ACB ( 2 góc đồng vị do MI//AC)
=> góc ABC = góc MIB
hay góc MBI = góc MIB => tam giác MIB cân tại M ( dấu hiệu nhận biết)
=> MB=MI ( t/c)
Mà MB= CN (gt)
=> MI=CN
Xét tứ giác MINC có
MI// CN (gt)
MI = CN (cmt)
=> tứ giác MINC là hình bình hành ( dấu hiệu nhận biết)
Xét hình bình hành MINC có
MN giao với IC tại O (gt)
=> O là trung điểm của MN(t/c)
=> OM= ON
Vậy OM=ON
a: Xét ΔABC và ΔAEF có
AB=AE
\(\widehat{BAC}=\widehat{EAF}\)
AC=AF
Do đó: ΔABC=ΔAEF
Suy ra: \(\widehat{ABC}=\widehat{AEF}\)
mà hai góc này là hai góc ở vị trí so le trong
nên FE//BC
dùng Thales là ra th bạn, bài dễ lắm