Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề si rồi trong tam giác vuông cạnh huyền phải lớn nhất chứ
a) Áp dụng định lý Pi-ta-go vào tamgiac vuông ABC có:
AB2 = BC2 - AC2
Thay: AB2 = 102 - 62 = 100 - 36 = 64
Nên AB = 8 ( cm )
Ta có: CM là đường trung tuyến
=> AM = BM
Mà AM + BM = AB
=> 2.BM = 8 <=> BM = 4 (cm)
Vậy BM = 4 (cm)
b) Xét 2 tam giác AMC và BMD, có:
AM = BM (vì CM là trung tuyến)
CM = DM (gt)
góc AMC = góc BMD (đ.đ)
=> tamgiac AMC = tamgiac BMD ( c.g.c)
Nên AC = BD (2 cạnh tương ứng)
c) Ta có: CD = CM + DM
Mà CM = DM ( gt )
=> CD = 2.CM
Trong tamgiac BDC có:
BC + BD > CD ( bất đẳng thức tamgiac)
Hay BC + BD > 2.CM (cmt)
Mà BD = AC
=> BC + AC > 2.CM ( đpcm)
d) Thêm đề: Gọi K là điểm nằm trên đoạn thẳng AM sao cho AK = 2323 AM
Vì AK = 2323 AM
=> K là trọng tâm
Hay CM đi qua K là đường trung tuyến
=> AN = DN
Mà N ∈∈ AD
=> BN là đường trung tuyến (1)
Mặt khác: BM = AM => DM là đường trung tuyến (2)
Ngoài ra I là giao điểm BN và DM (3)
Từ (1) (2) (3)
=> I là trọng tâm tamgiac DAB
=> ID=23DMID=23DM
Hay: DM=32IDDM=32ID
Mà: CD = 2.DM
=> CD=2.32ID=3.IDCD=2.32ID=3.ID(đpcm)
- 744tểt4eeẻ5dddrtưuu654e7iuyyyggggggggyu6tt777577757755677rrrrf6i77rtt7pppppppyyyhuihgyddđrttê