Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Kẻ tia Dx vuông góc với DF, Dx cắt BC tại M
tam giác DFM vuông tại D có DC là đường cao
dựa vào hệ thức lượng tam giác vuông, ta có:
\(\frac{1}{DF^2}+\frac{1}{DM^2}=\frac{1}{DC^2}\)
Mà DM = ED (chứng minh tam giác AED = tam giác CMD)
DC = AD (hình vuông ABCD)
=> đpcm
a) Có AH2=HF.HD \(\rightarrow\)\(\frac{AH}{HF}=\frac{HD}{AH}\)
Xét \(\Delta\)AHD và \(\Delta\)FHA có:
\(\widehat{AHD}=\widehat{FHA}=90^o\)
\(\frac{AH}{HF}=\frac{HD}{AH}\)( chứng minh trên)
\(\rightarrow\Delta\)AHD\(\approx\)\(\Delta\)FHA (c-g-c)
\(\rightarrow\)\(\widehat{ADH}=\widehat{FAH}\)( 2 góc tương ứng)
mà \(\widehat{ADH}+\widehat{HAD}=90^o\)
nên \(\widehat{FAH}+\widehat{HAD}=90^o\)
hay \(\widehat{FAD}=90^o\)\(\rightarrow\Delta\)ADF vuông tại A
ED//AB thì s \(D\in AB\) đc? Đề sai kìa