Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có
=> AB = 3 cm
Mà AB = AD ( gt)
=> AB = AD = 3cm
b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:
=> DC = 5 cm
=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :
AB = AD
BC = CD (5cm)
=> Tam giác CAB = tam giác CAD(cgv-ch)
c) Vì BC//DE
=> BCM = MDE (so le trong)
Xét tam giác BMC và tam giác DME ta có :
DM = MC
BCM = MDE(cmt)
DME = BMC
=> Tam giác BMC = tam giác DME (g.c.g)
=> BC=DE(dpcm)
d)chịu
Cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AD=AB
a, Cho biết AC=4cm, BC=5cm. Tính độ dài AB và BD. Hãy so sánh các góc của tam giác ABC
b, Chứng minh tam giác CBD cân
c, Gọi M là trung điểm của CD, đường thẳng qua D và song song với BC cắt đường thẳng BM tại E. Chứng minh rằng BC = DE và BC+BD>BE
d, Gọi K là gia điểm của AE và DM. Chứng minh rằng BC=6KM
Giải
a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có
=> AB = 3 cm
Mà AB = AD ( gt)
=> AB = AD = 3cm
b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:
=> DC = 5 cm
=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :
AB = AD
BC = CD (5cm)
=> Tam giác CAB = tam giác CAD(cgv-ch)
c) Vì BC//DE
=> BCM = MDE (so le trong)
Xét tam giác BMC và tam giác DME ta có :
DM = MC
BCM = MDE(cmt)
DME = BMC
=> Tam giác BMC = tam giác DME (g.c.g)
=> BC=DE(dpcm)
Bài làm
a) Xét tam ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )
hay \(\widehat{ACB}+60^0=90^0\)
=> \(\widehat{ACB}=90^0-60^0=30^0\)
b) Xét tam giác ABE và tam giác DBE có:
\(\widehat{BAE}=\widehat{BDE}=90^0\)
Cạnh huyền: BE chung
Cạnh góc vuông: AB = BD ( gt )
=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )
=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )
=> BI là tia phân giác của góc BAC
Mà I thược BE
=> BE là tia phân giác của góc BAC
Gọi I là giao điểm BE và AD
Xét tam giác AIB và tam giác DIB có:
AB = BD ( gt )
\(\widehat{ABE}=\widehat{DBE}\)( cmt )
BI chung
=> Tam giác AIB = tam giác DIB ( c.g.c )
=> AI = ID (1)
=> \(\widehat{BIA}=\widehat{BID}\)
Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )
Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)
=> BI vuông góc với AD tại I (2)
Từ (1) và (2) => BI là đường trung trực của đoạn AD
Mà I thược BE
=> BE là đường trung trực của đoạn AD ( đpcm )
c) Vì tam giác ABE = tam giác DBE ( cmt )
=> AE = ED ( hai cạnh tương ứng )
Xét tam giác AEF và tam giác DEC có:
\(\widehat{EAF}=\widehat{EDC}=90^0\)
AE = ED ( cmt )
\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )
=> Tam giác AEF = tam giác DEC ( g.c.g )
=> AF = DC
Ta có: AF + AB = BF
DC + BD = BC
Mà AF = DC ( cmt )
AB = BD ( gt )
=> BF = BC
=> Tam giác BFC cân tại B
=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\) (3)
Vì tam giác BAD cân tại B ( cmt )
=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\) (4)
Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)
Mà Hai góc này ở vị trí đồng vị
=> AD // FC
d) Xét tam giác ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau ) (5)
Xét tam giác DEC vuông tại D có:
\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau ) (6)
Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)
Ta lại có:
\(\widehat{ABC}>\widehat{EBC}\)
=> AC > EC
Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)
=> EC = 1/2 AC.
=> E là trung điểm AC
Mà EC = EF ( do tam giác AEF = tam giác EDC )
=> EF = 1/2AC
=> AE = EC = EF
Và AE = ED ( cmt )
=> ED = EC
Mà EC = 1/2AC ( cmt )
=> ED = 1/2AC
=> 2ED = AC ( đpcm )
Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!??
câu a>Ta có :BC=2AB mà E là trung điểm của BC suy ra BE=AB
Xét tam giác ABD và tam giác EBD có:
AB=EB(gt)
góc ABD=góc EBD(vì BD là phân giác góc ABC
Cạnh BD chung
Từ đó suy ra tam giác ABD= tam giác EBD
Suy ra góc ADB=góc EDB( 2 góc t/ ư)
Suy ra DB là phân giác góc ADE
d) Gọi H là giao điểm của AI và BE
Tam giác ACB vuông tại A có I là trung điểm BC
=> AI=CI=BI
=> Tam giác CIA cân tại I
=> \(\widehat{CAI}=\widehat{ACI}\Rightarrow\widehat{EAI}=\widehat{ECI}=\widehat{EBI}\)
Để AI vuông BC thì \(\widehat{EAH}=\widehat{ABH}\)( cùng phụ với góc HAB)
Khi đó \(\widehat{EBI}=\widehat{EBA}\)do vậy nên tam giác EAB =tam giác EIB suy ra AB=AI=1/2 BC
Vậy để AI vuông BE thì tam giác ABC có AB=1/2 BC