Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha!
a)
Xét tam giác ABM và tam giác ADM có:
AB = AD (gt)
BM = DM (vì M là trung điểm của BD)
AM là cạnh chung
=> Tam giác ABM = Tam giác ADM (c . c . c)
b) Xét tam giác ABD có:
AB = AD (gt)
=> Tam giác ABD cân tại A.
Có M là trung điểm của BD
=> AM là đường trung tuyến của tam giác ABD.
=> AM đồng thời là đường cao của tam giác ABD.
=> AM ⊥ BD.
c) Theo câu b) ta có tam giác ABM = tam giác ADM.
=> BAM = DAM (2 góc tương ứng)
Hay BAK = DAK.
Xét tam giác ABK và tam giác ADK có:
AB = AD (gt)
BAK = DAK (cmt)
AK là cạnh chung
=> Tam giác ABK = Tam giác ADK (c . g . c)
=> ABK = ADK (2 góc tương ứng).
d) Theo câu c) ta có tam giác ABK = tam giác ADK.
=> BK = DK (2 cạnh tương ứng).
Ta có:
ABK + KBF = 1800 (vì 2 góc kề bù)
ADK + KDC = 1800 (vì 2 góc kề bù)
Mà ABK = ADK (cmt)
=> KBF = KDC
Xét tam giác KBF và tam giác KDC có:
KB = KD (cmt)
KBF = KDC (cmt)
BF = DC (gt)
=> Tam giác KBF = Tam giác KDC (c . g . c)
=> BKF = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180 (2 góc kề bù)
Mà BKF = DKC (cmt).
=> BKD + BKF = 1800
Mà BKD + BKF = FKD.
=> FKD = 1800
=> F, K, D thẳng hàng (đpcm).
Chúc bạn học tốt!
a: Xét ΔAMB và ΔAMD có
AM chung
MB=MD
AB=AD
Do đó: ΔAMB=ΔAMD
b: ta có: ΔABD cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
d: Xét ΔKBE và ΔKDC có
KB=KD
\(\widehat{KBE}=\widehat{KDC}\)
BE=DC
Do đó: ΔKBE=ΔKDC
Suy ra: \(\widehat{BKE}=\widehat{DKC}\)
=>\(\widehat{BKE}+\widehat{BKD}=180^0\)
hay E,K,D thẳng hàng
a: Xét ΔABM và ΔADM có
AB=AD
BM=DM
AM chung
DO đó: ΔABM=ΔADM
b: Ta có: ΔBAD cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
a: Xét ΔAMB và ΔAMD có
AM chung
MB=MD
AB=AD
Do đó: ΔAMB=ΔAMD
b: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
c: Xét ΔKBE và ΔKDC có
KB=KD
\(\widehat{KBE}=\widehat{KDC}\)
BE=DC
Do đó: ΔKBE=ΔKDC
Suy ra: \(\widehat{BKE}=\widehat{DKC}\)
=>\(\widehat{BKE}+\widehat{BKD}=180^0\)
hay E,K,D thẳng hàng