Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
B A C D E K
a) Xét tứ giác AKCH có :
AD = DC ( D là trung điểm AC )
HD = DK ( K là điểm đối xứng của H qua D )
=> AKCH là hình bình hành (1)
Xét ∆ vuông AHC có :
HD là trung truyến
=> HD = AD = DC
Mà HD + DK = HK
AD + DC = AC
=> HK = AC (2)
Từ (1) và (2) => AKCH là hình chữ nhật
b) Xét ∆ABC có :
E là trung điểm AB
D là trung điểm BC
=> ED là đường trung bình ∆ABC
=> ED //BC
Xét ∆ABC có :
E là trung điểm AC
I là trung điểm BC
=> EI là đường trung bình ∆ABC
=> EI//AC , EI = \(\frac{1}{2}AC\)
Xét tứ giác EDCI có :
ED// IC ( I \(\in\)BC )
EI//DC ( D \(\in\)AC)
=> EDCI là hình bình hành
c) Vì ED //HI ( H , I \(\in\)BC )
=> EDIH là hình thang
Vì EI = \(\frac{1}{2}AC\)(cmt)
Mà HD = AD = DC (cmt)
=> HD = \(\frac{1}{2}AC\)
=> EI = HD
Mà EDIH là hình thang
=> EDIH là hình thang cân ( 2 đường chéo bằng nhau )
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC và DE=1/2BC
=>DE//BF và DE=BF
=>BDEF là hình bình hành
b: Xét tứ giác AICM có
E là trung điểm chung của AC và IM
góc AIC=90 độ
Do đó; AICM là hình chữ nhật
Hình bạn tự vẽ nha.
a, \(\Delta ABC\)có: \(AD=DB\left(gt\right)\)
\(AE=EC\left(gt\right)\)
\(\Rightarrow\)DE là đường trung bình của \(\Delta ABC\Rightarrow\hept{\begin{cases}DE//BC\\DE=\frac{1}{2}BC\end{cases}}\)
mà \(BF=\frac{1}{2}BC\left(gt\right)\)
\(\Rightarrow\hept{\begin{cases}DE//BF\\DE=BF\end{cases}}\)
Tứ giác BDEF có: \(\hept{\begin{cases}DE//BF\left(cmt\right)\\DE=BF\left(cmt\right)\end{cases}}\)
\(\Rightarrow\)BDEF là hình bình hành
b, Ta có: I đối xứng với J qua E \(\Rightarrow\)E là trung điểm của IJ
Tứ giác AICJ có 2 đường chéo AC và IJ cắt nhau tại trung điểm E của mỗi đường \(\Rightarrow\)AICJ là hình bình hành mà \(\widehat{AIC}=90^o\Rightarrow\)AICJ là hình chữ nhật
c, \(\Delta ABC\)có: \(AD=BD\left(gt\right)\)
\(BF=FC\left(gt\right)\)
\(\Rightarrow\)DF là đường trung bình của \(\Delta ABC\Rightarrow DF//AC\)
Tứ giác ADKE có \(DK//AE\left(cmt\right)\Rightarrow\)ADKE là hình thang
Tương tự ta có tứ giác KECF là hình thang
BDEF là hình bình hành \(\Rightarrow DK=KF=\frac{1}{2}DF\)
Ta có: \(S_{ADKE}=\frac{\left(DK+AE\right).KE}{2}\)
\(S_{KECF}=\frac{\left(KF+EC\right).KE}{2}\)
mà \(DK=KF,AE=EC\left(cmt\right)\)
\(\Rightarrow S_{ADKE}=S_{KECF}\)
bn tự kẻ hình nha!
a) xét tg ABC
có: AD = BD, AE = EC
----> DE// BC // BF ( đường trung bình)
----> DE = 1/2.BC = BF
----> BDEF là h.b.h
b) xét tứ giác AHCK
có: HE = EK ; AE = EC
----> AHCK là h.b.h
mà ^AHC = 90o
---> AHCK là h.c.n
----> \(AK\perp AH⋮A\)(1)
cmtt; ta có: AIBH là h.c.n
----> \(AI\perp AH⋮A\)(2)
từ (1);(2) -----> I,A,K thẳng hàng
c) ta có: PQ là đường trung bình của hình thang HFED ( cm HFED là hình thang thì bn tự cm nha)
-----> \(PQ=\frac{DE+HF}{2}\Rightarrow4PQ=2DE+2HF\)(1)
lại có: DE là đường trung bình của tg HKI ( tự cm nha bn)
----> DE = 1/2. IK -----> 2.DE = IK (2)
từ (1),(2) ----> 4PQ = IK + 2HF
α π √ Ω ∽ ∞ Δ μ ∈ ∉ ∋ ⊂ ∩ ∪ ∀ ∃ ≤ ≥ ∝ ≈ ⊥ ± ∓ ° ωt + φ λ
Hình tự vẽ.
1) BDEF là hình bình hành.
Xét ΔABC có AD = DB (D là trung điểm), AE = EC (C là trung điểm)
=> DE là đường trung bình của ΔABC.
=> DE//BC, DE = 1/2 BC
Mặt khác, ta có: BF = 1/2BC (F là trung điểm của BC)
=> DE = BF mà DE//BC (cmt)
=> BDEF là hình bình hành (đpcm)
2) AHCK là hình chữ nhật. I, A, K thẳng hàng.
Xét tứ giác AHCK có:
AE = EC (E là trung điểm), EH = HK (K đối xứng với H qua E)
=> AHCK là hình bình hành.
Mà ^(AHC) = 90° (GT)
=> AHCK là hình chữ nhật (đpcm)
=> ^(HAK) = 90°
Mặt khác, ta xét tương tự tứ giác BHAI có:
AD = BD (D là trung điểm), DI = DH (I đối xứng với H qua D)
=>BHAI là hình bình hành, mà ^(AHB) = 90°
=> AHBI là hình chữ nhật,
=> ^(IAH) = 90°
=> ^(IAK) = ^(AIH) + ^(HAK) = 90° + 90° = 180°
=> I, A, K cùng nằm trên một đường thẳng
Hay I, A, K thẳng hàng.
3)
Xét ΔIKH có: HD = DI (I đối xứng H qua D), HE = EK (K đối xứng H qua E)
=> DE là đường trung bình của ΔIHK.
=> DE = 1/2IK hay IK = 2DE
Ta có: DE//BC (cmt) => DEFH là hình thang.
Xét hình thang DEFH có: DP = PH (P là trung điểm), QE = QF (Q là trung điểm)
=> PQ là đường trung bình của hình thang DEFH.
=> PQ = (DE + FH)/2
Quy đồng vế phải, ta được: PQ = 2DE + 2FH / 4 (IK = 2DE)
=> 4PQ = IK + 2HF (đpcm)