K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có

AD chung

góc MAD=góc NAD

=>ΔMAD=ΔNAD

=>AM=AN

b: Xét ΔACB có AM/AB=AN/AC

nên MN//BC

c: Xét ΔADE có

AM vừa là đường cao, vừa là trung tuýen

=>ΔADE cân tại A

=>AD=AE

Xét ΔADF có

AN vừa là đường cao, vừa là trung tuyến

=>ΔADF cân tại A

=>AD=AF

=>AE=AF

=>ΔAEFcân tạiA

a: Xét ΔMBD vuông tại D và ΔNCE vuông tại E có 

DB=CE

\(\widehat{MBD}=\widehat{NCE}\left(=\widehat{ACB}\right)\)

Do đó: ΔMBD=ΔNCE

Suy ra: DM=EN

7 tháng 3 2018

(Cái này là mình giải trong trường hợp AM là tia đối của AB nhé)

a)  Tam giác ABC cân tại A => ABC= ACB

Mà ACB= ECN(đối đỉnh) => ABC= ECN

Xét tam giác BMD và tam giác CNE có :

BDM=CEN(=900);BD=CE(GT);ABC=ECN(chứng minh trên)

Do đó tam giác BMD=tam giác CNE(g.c.g)=>MD=NE(2 cạnh tương ứng) (đpcm)

b)Vì MDE=CEN(=900)=>MD//EN(Do có 1 cặp góc bằng nhau ở vị trí SLT)

=>DMN=ENM(cặp góc SLT)

Xét tam giác DMI và tam giác ENI có :

DMN=ENM(c/m trên);MD=NE(đã c/m ở câu a);BMD=IEN(=900)

Do đó tam giác DMI= tam giác ENI(g.c.g)=>MI=NI(2 cạnh tương ứng)

Mà I nằm giữa M và N => I là TĐ của MN 

Hay BC cắt MN tại TĐ I của MN.

(câu c mk ko bít làm)

13 tháng 3 2023

a) Vì ΔABCΔ��� cân tại A(gt)�(��)

=> ˆABC=ˆACB���^=���^ (tính chất tam giác cân).

Mà ˆACB=ˆNCE���^=���^ (vì 2 góc đối đỉnh).

=> ˆABC=ˆNCE.���^=���^.

Hay ˆMBD=ˆNCE.���^=���^.

Xét 2 ΔΔ vuông BDM��� và CEN��� có:

ˆBDM=ˆCEN=900(gt)���^=���^=900(��)

BD=CE(gt)��=��(��)

ˆMBD=ˆNCE(cmt)���^=���^(���)

=> ΔBDM=ΔCENΔ���=Δ��� (cạnh góc vuông - góc nhọn kề).

=> DM=EN��=�� (2 cạnh tương ứng).

b) Xét 2 ΔΔ vuông DMI��� và ENI��� có:

ˆMDI=ˆNEI=900(gt)���^=���^=900(��)

DM=EN(cmt)��=��(���)

ˆDIM=ˆEIN���^=���^ (vì 2 góc đối đỉnh)

=> ΔDMI=ΔENIΔ���=Δ��� (cạnh góc vuông - góc nhọn kề).

=> MI=NI��=�� (2 cạnh tương ứng).

=> I là trung điểm của MN.��.

Mà I∈BC(gt)�∈��(��)

=> Đường thẳng BC�� cắt MN�� tại trung điểm I của MN(đpcm).��(đ���).

 

 

25 tháng 12 2024

Ggg

 

25 tháng 12 2024

\(\dfrac{ }{ }\)