Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nghỉ thôi, học hành j tầm này.
a) Áp dụng định lí Pi - ta - go, ta có:
102 - 52 = 75 => AC = \(\sqrt{75}\)
Còn mấy phần kia mình hơi vội nên chưa lm đc thông cảm nhé
Bạn tự vẽ hình nhé
Xét các tam giác vuông AKM và tam giác vuông CHN có
AM=NC ( bằng 1 nửa đoạn AB=AC)
Góc MAK= góc NCH ( cùng phụ với AMC)
=> \(\Delta AKM=\Delta CHN\)( cạnh huyền - góc nhọn)
=> AK=HC ( 2 cạnh tương ứng)
Ta có NH//AK( quan hệ giữa tính vuông góc và song song) (1)
Có N là trung điểm của cạnh AC (2)
Từ (1) và (2) => NH là đường trung bình của \(\Delta ACK\)
=>H là trung điểm của KC
b) Theo câu a, ta có AK=HC và KH=HC
=>AK=HC
=> AK2+KH2=AH2
=>2.AK2=16
=>AK2=8
=>AK=KH=\(\sqrt{8}\)
=>KC=2.KH=2.\(\sqrt{8}\)=\(\sqrt{32}\)
Xét tam giác vuông AKC vuông tại K có AC2=AK2+KC2
=>AC2=8+32=40
=>\(AC=AB=\sqrt{40}\)
Diện tích tam giác ABC là
\(\frac{\sqrt{40}.\sqrt{40}}{2}=\frac{40}{2}=20\) cm2
Câu c hình như sai đề
Theo cau a ta co:
goc BAK = gocACH va AK = CH
Ta CM duoc tam giac BKA = Tam giac AHC ( c . g . c )
Suy ra goc DKA = goc AHC
Ma tam giac AKH vuong tai A
Suy ra goc AHK = 45 do
Suy ra goc AHC = 135 do ( ke bu )
Hay goc AKB = 135 do
Ta co goc AKH = 90 do Suy ra goc BKH = 135 do
Hay AKB = 135 do
Ta lai co goc AKH = 90 do Suy ra BKH = 35 do
Suy ra tam giac BKA = tam gic BKM
goc BHK = goc BAK
Do HE || AC ( cung vuong goc AB )
Suy ra goc EHM = goc ACH Va goc BAK = goc ACH
Suy ra BHK = MHE
HM la tia phan giac goc EHB
A B C D E I
a) Xét tam giác vuông ABD và tam giác vuông ACE có
góc A chung
AB= AC
=> tam giác vuông ABD = tam giác vuông ACE ( cạnh huyền góc nhọn)
=> BD=CE ( 2 cạnh tương ứng )
b) Vì tam giác v ABD = tam giác ACE (cmt)
=> góc ABD = góc ADE ; AE=AD
Ta có : AE+EB = AB
AD+DC= AC
Mà AE=AD ; AB=AC
=> EB=DC
Xét tam giác vuông BEI và tam giác vuông CDI có :
EB=DC
góc ABD=góc ACE
=> tam giác BEI= tam giác CDI ( cạnh huyền góc nhọn )
=> EI= ID ( 2 cạnh tg ứng )
c) Xét tam giác ABC có
CE là đường cao tam giác ABC
BD là đường cao tam giác ABC
MÀ CE và BD cắt nhau tại I
=> I là trực tâm tam giác ABC
=> AI vuông góc với BC (1)
Ta có : BI = CI ( tam giác BEI = tam giác CDI)
=> tam giác IBC là tam giác cân
MÀ IH là trung tuyến của tam giác IBC ( H là TĐ của BC)
=> IH đồng thời là đường cao của tam giác IBC
=> IH vuông góc với BC (2)
Từ (1) và (2) => A, I , H thẳng hàng