K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

mày đoán xem

6 tháng 4 2020

Nối M với N,B với N

Diện tích ABN=2/3 diện tích ABC (Vì AN=2/3AC)

Diện tích ABN là

   360*2/3=240(cm2)

Diện tích AMN=2/3 diện tích ABN(vì AM=2/3AC)

Diện tích AMN là

   240*2/3=160(cm2)

11 tháng 6 2019

Cậu tự vẽ hình nhé

a, kẻ MK vuông BC, NG vuông BC

Tam g ABC cân => g ABC= g ACB 

Lại có g ACB = g GCN (dd)

=> g GCN = g ABC=g MBK

Xét tg MBK và tg NCG 

g MKB= g NGC =90° 

g MBK = g NCG (cmt)

MB= CN(gt)

=> tg MBK= tg NCG ( ch-gn)

=> MK=NG (2 cạnh tương ứng)

Vì MK vuông BC, NG vuông BC => NG// MK 

=> g GNM = g KMN ( so le trong )

Xét tg MKD VÀ TG NGD

g MKD = g DGN = 90°

g KMD = gDNG ( cmt)

Mk= GN (cmt)

=> tg MKD = tg NGD (_cgv-gn)

=> MD= ND (2 ctu)

=> D là td MN ( dpcm)

11 tháng 6 2019

Xét tam giác cân ABC , AH là đường cao => AH là trung trực 

Lại có E thuộc AH => EC= EB 

Xét tg ABE và tg ACE

AB=AC (tg ABC cân)

BE= EC (cmt)

AE cạnh chung 

=> tg ABE = tg ACE (ccc)

=> g ABE = g ACE ( 2 góc tương ứng)(1)

Lại có DE là trung trực MN => ME = NE

Xét tg MBE và tg NCE

MB = NC ( gt)

ME = NE (cmt)

BE = CE (cmt)

=> tg MBE = tg NCE (ccc)

=> g ECN = g EBM (2 góc t u ) (2)

Từ 1), 2) => g ECA = g ECN 

Lại có 2 góc này bù nhau

=>g ACE= 90°= g ABE

Xét tg ABE vuông

+ theo đl pytago:

=> AE = √( ab2+bE2)= √( 62+4,52)= 7,5 (cmcm)

+ BH là đcao, theo hệ thức lượng trong tg vuông

=>+ AB2= AH.AE => AH= 62:7,5=4,8 (cmcm)

+ 1/(BH2)= 1/(AB2)+1/(BE2) => BH = √(1:( (1/62)+(1/4,52))= 3,6(ccmcm)

=> BC= 3,6.2= 7,2 (cm)

=> dt tg ABC có đcao AH là 7,2.4,8.1/2= 28,08(cm2)

Vậy S tg ABC = 28,08 cm2

28 tháng 11 2023

Xét ΔABC có \(\dfrac{AF}{AB}=\dfrac{2}{3}\)

nên \(S_{AFC}=\dfrac{2}{3}\cdot S_{ABC}=\dfrac{2}{3}\cdot18=12\left(cm^2\right)\)

Xét ΔAFC có \(\dfrac{AE}{AF}=\dfrac{AD}{AC}=\dfrac{1}{2}\)

nên ED//FC

Xét ΔAFC có ED//FC

nên \(\dfrac{ED}{FC}=\dfrac{AE}{AF}=\dfrac{1}{2}\)

Xét ΔAFC có ED//FC

nên ΔAED đồng dạng với ΔAFC

=>\(\dfrac{S_{AED}}{S_{AFC}}=\left(\dfrac{ED}{FC}\right)^2=\dfrac{1}{4}\)

=>\(S_{AED}=\dfrac{1}{4}\cdot S_{AFC}=3\left(cm^2\right)\)

\(S_{AED}+S_{EDCF}=S_{AFC}\)

=>\(S_{EDCF}=S_{AFC}-S_{AED}=9\left(cm^2\right)\)

16 tháng 9 2017

Tam giác ABC có đường thẳng d cắt AB tại E và AC tại F 
Ta có S(AEF)/S(ABC) = AE.AF/AB.AC 
Ghi chú: S(ABC) là diện tích tam giác ABC 
Từ AM/AB = BN/BC = CP/CA = 1/3 
=> BM/BA = CN/CB = AP/AC = 2/3 
Áp dụng ta có: 
S(AMP)/S(ABC) = AM.AP/AB.AC = 1/3.2/3 = 2/9 (1) 
S((BMN)/S(ABC) = BN.BM/BC.BA = 1/3.2/3 = 2/9 (2) 
S(CNP)/S(ABC) = CN.CP/CB.CA = 1/3.2/3 = 2/9 (3) 
Cộng (1), (2), (3) vế theo vế ta có: 
[S(AMP) + S(BMN) + S(CNP)]/S(ABC) = 6/9 = 2/3 
=> S(AMP) + S(BMN) + S(CNP) = 2/3.S(ABC) = 2/3.S 
Mà S(AMP) + S(BMN) + S(CNP) + S' = S 
=> S' = S - 2/3.S = 1/3.S 

16 tháng 9 2017

Thanks bn ha