K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2019


A B C D E O

a,Ta có \(\frac{AE}{AB}=\frac{3}{6}=\frac{1}{2}\);\(\frac{AD}{AC}=\frac{4}{8}=\frac{1}{2}\)

\(\Rightarrow\frac{AE}{AB}=\frac{AD}{AC}\left(=\frac{1}{2}\right)\)

Xét △AED và △ABC có :

\(\widehat{A}\) là góc chung

\(\frac{AE}{AB}=\frac{AD}{AC}\) (cmt)

⇒ △AED ∞ △ABC (c-g-c)(đpcm)

b,Xét △AEB và △ADC có:

\(\widehat{A}\) là góc chung

\(\frac{AE}{AB}=\frac{AD}{AC}\)(cmt)

⇒ △AEB ∞ △ADC (c-g-c)

\(\widehat{ABE}\) = \(\widehat{ACD}\)

Ta có AD + DB = AB ⇒ DB = AB - AD ⇒ DB = 6 - 4 = 2 (cm)

AE + EC = AC ⇒ EC = AC - AE ⇒ EC = 8 - 3 = 5 (cm)

Ta có \(\frac{DB}{EC}=\frac{2}{5}\)

Xét △OBD và △OCE có :

\(\widehat{DOB}\) = \(\widehat{EOC}\) ( đối đỉnh)

\(\widehat{DBO}\) = \(\widehat{ECO}\) ( \(\widehat{ABE}\) = \(\widehat{ACD}\)) (cmt)

⇒ △OBD ∞ △OCE (g-g)

Ta có \(\frac{S_{\text{△OBD}}}{S_{\text{△OCE}}}=\left(\frac{DB}{EC}\right)^2=\left(\frac{2}{5}\right)^2=\frac{4}{25}\)

Vậy tỉ số diện tích của 2 tam giác OBD và OCE là \(\frac{4}{25}\)

7 tháng 6 2021

E A C D F I y x

a, Xét \(\Delta AEF\) và \(\Delta ADC\) có:

\(\widehat{A}\) chung

\(\dfrac{AE}{AF}=\dfrac{3}{6}=\dfrac{1}{2};\dfrac{AD}{AC}=\dfrac{4}{8}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{AE}{AF}=\dfrac{AD}{AC}\)

Vậy \(\Delta AEF\sim\Delta ADC\left(c.g.c\right)\)

b, Vì \(\Delta AEF\sim\Delta ADC\) (cmt)  \(\Rightarrow\widehat{DFI}=\widehat{ECI}\)

Lại có \(\widehat{DIF}=\widehat{ECI}\left(gt\right)\)    \(\Rightarrow\Delta DIF\sim\Delta EIC\left(g.g\right)\)

\(\Rightarrow\dfrac{S_{IDF}}{S_{IEC}}=\left(\dfrac{DF}{EC}\right)^2=\left(\dfrac{2}{5}\right)^2=\dfrac{4}{25}\)

-Chúc bạn học tốt-

 

14 tháng 12 2018


`bạn tự kẻ hình nhé
ta đễ dàng cm dk DM=CM
Từ đó ta có SAMDAMD=1/2 SDACDAC=1/3 SABCABC
SBDMBDM = 1/2SBDCBDC= 1/6 SABCABC
Suy ra SABMABM=(1/3+1/6)SABCABC= 1/2SABCABC= 15m^2

14 tháng 12 2018

cho hỏi là làm sao dm=cm

2 tháng 5 2017

Xét tam giác AED Và Tam giác ABC có  : Góc A chung và \(\frac{AE}{AB}=\frac{6}{15}=\frac{2}{5},\frac{AD}{AC}=\frac{8}{20}=\frac{2}{5}\) suy ra tam giác AED đồng dạng với tam giác ABC (cgc)  suy ra \(S_{AED}:S_{ABC}=\left(\frac{AE}{AB}\right)^2=\left(\frac{2}{5}\right)^2=\frac{4}{25}\)

25 tháng 4 2021

Tỉ lệ dt hai∆ =bình phương của hệ số tỉ lệ

8 tháng 2 2019

123456789

Bài 1: 1) Trên tia Ax lấy các điểm B, C, D  theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.a) Tính các tỷ số số AB/ BC và  BC/CDb) Chứng minh BC2 = AB.CD2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.a) Tính tỉ số AB/CDb) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai...
Đọc tiếp

Bài 1: 1) Trên tia Ax lấy các điểm B, C, D  theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.

a) Tính các tỷ số số AB/ BC và  BC/CD

b) Chứng minh BC2 = AB.CD

2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.

a) Tính tỉ số AB/CD

b) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD 

Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai cạnh AB, AC sao cho AD/AB = AE/AC.

a) Chứng minh AD/BD = AE/EC

b) Cho biết AD = 2 cm, BD =1 cm và AE = 4 cm. Tính AC.

Bài 3: Cho tam giác ABC có D, E lần lượt thuộc các cạnh AB và AC sao cho BD/AB = CE/CA.

a) Chứng minh AD/AB = AE/AC

b) Cho biết AD = 2 cm, BD = 1 cm và AC = 4 cm. Tính EC

Bài 4: Cho tam giác ACE có AC = 11 cm. Lấy điểm B trên cạnh AC sao cho BC = 6cm. Lấy điểm D trên cạnh AE sao cho BD song song với EC. Giả sử AE + ED = 25,5 cm. Hãy tính:

a) Tỷ số DE/AE

b) Độ dài các đoạn thẳng AE, DE và AD.

Bài 5: Cho tam giác ABC và điểm D trên cạnh BC sao cho BD/BC = 3/4, điểm E trên đoạn thẳng AD sao cho cho AE/AD = 1/3. Gọi K là giao điểm của BE và AC. a) Tính tỷ số số AK/KC

b) Vẽ hình bình hành ABCM. Trên cạnh MC lấy điểm G sao cho MG= 1/4 MC. Gọi N là giao điểm của AG và BM. Tính tỉ số MN/MB.

0
20 tháng 1 2018

:  a/ Xét 2 tam giác BDE và CED có 
BD=EC 
DE chung 
Góc BDE = góc DEC do chúng lần lượt bù với 2 góc bằng nhau là ADE và AED 
=> dccm (c.g.c) 
b/ Có góc DKB bằng góc EKC do đối đỉnh 
KD=KE 
góc BDK=góc CEK 
=> KBD=KCE (g.c.g) 
c/ Tam giác ABK và ACK bằng nhau (tự cm, cái này dễ) 
=> góc BAK = góc CAK =>dccm 
d/ kéo dài AM cắt BC tại H 
Tam giác BMH = tam giác CMH 
=> góc BMH bằng góc CMH 
=> dpcm

Bố thí cho cái  - Give you  :v