Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì B là trung điểm của AE, B là trung điểm DC
=> AE và DC cắt nhau tại trung điểm mỗi đường
=> Tứ giác ACED là hình bình hành
Ta có: \(S_{ACED}=S_{ABC}+S_{BEC}+S_{BDE}+S_{ABD}\)
\(=\frac{1}{2}\cdot AB\cdot BC\cdot\sin\widehat{ABC}+\frac{1}{2}BE\cdot BC\cdot\sin\widehat{EBC}+\frac{1}{2}BE\cdot BD\cdot\sin\widehat{EBD}+\frac{1}{2}BD\cdot BA\cdot\sin\widehat{ABD}\)
\(=8\sqrt{3}\left(cm^2\right)\)
C H D E B A
+)Ta có:BA = BE (gt)
\(\implies\) B là trung điểm của AE\(\left(1\right)\)
+)Ta có:BD = BC (gt)
\(\implies\) B là trung điểm của DC\(\left(2\right)\)
Từ (1);(2) \(\implies\) B là trung điểm của AE ; DC
\(\implies\) AE và DC cắt nhau tại B
\(\implies\) Tứ giác ADEC là hình bình hành
+)Kẻ AH vuông góc với DC
Xét tam giác AHB có:
ABH + BAH + AHB =180 (tổng ba góc trong một tam giác)
\(\implies\) 60 + BAH + 90 =180
\(\implies\) BAH =30
\(\implies\) BH =\(\frac{1}{2}\) AB
\(\implies\) BH = \(1\) (cm)
Xét tam giác ABH vuông tại H có:
\(AH^2+BH^2=AB^2\) (định lý Py - ta - go)
\(\implies\) \(AH^2+1^2=2^2\)
\(\implies\) \(AH^2+1=4\)
\(\implies\) \(AH^2=3\) (cm)
Ta có: BH + HC = BC
\(\implies\)1 + HC = 4
\(\implies\) HC = 3 (cm)
Xét tam AHC vuông tại H có:
\(AH^2+HC^2=AC^2\) (định lý Py - ta - go)
\(\implies\) \(3+3^2=AC^2\)
\(\implies\) \(3+9=AC^2\)
\(\implies\) \(AC^2=12\)
\(\implies\) \(AC=\sqrt{12}\) (cm)
Ta có:HB + BD = HD
\(\implies\) 1 + 4 = HD
\(\implies\) HD = 5 (cm)
+)Xét tam giác AHD vuông tại H có:
\(AH^2+HD^2=AD^2\) (định lý Py - ta - go)
\(\implies\) \(3+5^2=AD^2\)
\(\implies\) \(3+25=AD^2\)
\(\implies\) \(28=AD^2\)
\(\implies\) \(AD=\sqrt{28}\) (cm)
Vậy diện tích hình tứ giác \(ACED\)\(=\sqrt{28}.\sqrt{12}=\sqrt{336}\) (cm)
Lần đầu tớ vẽ hình trên máy tính nên có gì sai sót thì cậu thông cảm cho
B C D A E F
a) Xét ΔADB và ΔEDB có:
BA = BE ( giả thiết )
Góc ABD = EBD ( BD là tia phân giác của góc ABE )
BD cạnh chung.
=> ΔADB = ΔEDB ( c.g.c )
=> DA = DE ( 2 cạnh tương ứng )
b) Vì ΔADB = ΔEDB nên góc DAB = DEB = 90 độ ( 2 góc tương ứng).
A B C D E
Ta thấy AB = BD (GT) ; AC=CE (GT)
Mà AB = AC ( do tam gaics ABC cân tại A)
Nên BD=CE
Ta thấy ^DBA = 180 dộ - ^ABC
^ECA = 180 độ - ^ACB
mà ^ABC = ^ ACB suy ra ^DBA = ^ ECA
Xét tam giác ABD và tam giác ACE có:
AB = AC
^BDA = ^ECA (cmt)
BD = CE ( cmt )
suy ra tam giác ABD = tam giác ACE (c.g.c)
Suy ra ^D = ^ E ( 2 cạnh tương ứng)
Suy ra tam giac ADE cân tại A
+, ta thấy DE = BD + BC + CE
MÀ BD =AB ( GT ); CE= AC (GT)
Suy ra DE = AB+ BC+AC
b, Tam giác ABC có: ^BAC + ^ABC+^ACB = 180
32 + ^ABC + ^ ACB =180
^ABC + ^ACB = 180-32=158
Suy ra ^ABC = ^ ACB = 158 :2 = 79
Mà ^ABC là góc ngoài của tam giac ABD cân tại b
Nên ^D=79:2=39,5
Suy ra D =^E= 39,5( tam giác ADE cân)
SUY ra DAC= 180-39,5-39,5=101