Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ Xét tam giác AMN và tam giác CMB có:
BM=MN(cmt)
AM=MC(cmt)
Góc AMN= góc CMB( đối đỉnh)
Vậy tam giác AMN = tam giác CMB(c-g-c)
=> AN=BC(hai canh tương ứng)
góc BCM=góc MAN(2 góc tương ứng)
Do góc BCM và góc MAN là cặp góc so le trong bằng nhau nên AN//BC
hình vẽ đấy nhé
GIAI
a ) xét tam giác AMB và tam giác CMN có
AM = MC ( M là trung điểm của AC )
góc AMB = goc CMN ( đối đỉnh )
MB = MN ( M là trung điểm của BN )
=> tam giác AMB = tam giác CMN ( c.g.c)
=> AB = CN ( 2 cạnh tương ứng )
=> góc BAM = NCM = 90 độ ( 2 góc tương ứng )
=> CN vuông góc với AC (dpcm )
b ) chúng minh tương tự
=> tam giác ANM = tam giác CBM ( c.g.c )
=> AN = BC ( 2 cạnh tương ứng )
=> góc ANM = góc CBM ( 2 góc tương ứng )
mà 2 góc ở vị trí so le trong của 2 đường thẳng AN và BC
=> AN song song BC ( dpcm)
a: Xét ΔCMN và ΔAMB có
MC=MA
\(\widehat{CMN}=\widehat{AMB}\)
MN=MB
Do đó: ΔCMN=ΔAMB
Suy ra: \(\widehat{MCN}=\widehat{MAB}\) và CN=AB
hay CN\(\perp\)AC
a) Xét △ABM vuông tại A và △DBM vuông tại D có:
BM chung
AB=DB=3cm(gt)
=> △ABM=△DBM (cạnh huyền-cạnh góc vuông) => AM=DM(2 cạnh t/ứ)
b) Xét △AMN và △DMC có:
AMN=DMC(2 góc đối đỉnh)
AM=DM(cmt)
MAN=MDC(gt)
=> △AMN=△DMC(g.c.g) => MN=MC(2 cạnh tướng ứng) => △MCN cân tại M
c) Vì △AMN=△DMC(cmt) => AN=DC(2 cạnh tương ứng)
Ta có AB=BD;AN=DC;BN=AN+AB;BC=BD+DC => BN=BC=> △BNC cân tại B
Vì △ABM=△DBM(cmt)=> ABM=DBM=> NBK=CBK (A thuộc BN; D thuộc BC;M thuộc BK) => BK là phân giác NBC
=> Trong △BNC cân tại B, BK là đường phân giác, đường trung trực, đường trung tuyến, đường cao,... (t/c) => BK là đường trung trực của CN
d) Áp dụng định lý Pytago vào △ABC vuông tại A có: AB2+AC2=BC^2
=> 9+16=25=BC^2 (cm) => BC = 5 cm
Ta có BD+DC=BC;BD=3cm=> DC=2cm
Ta có AN=DC(cmt) => AN=2cm
Áp dụng định lý Pytago vào △ANC vuông tại A có:
AN^2+AC^2=NC^2
=> 4+16=NC^2
=> NC= căn 20 = 2 x căn 5 (cm)
Vì BK là trung trực NC => K là trung điểm NC => KC = 1/2 NC = căn 5 (cm)
Áp dụng định lý Pytago vào △BKC vuông tại K có:
BC^2=BK^2+KC^2 => BK^2=BC^2+KC^2=25-5=20cm => BK=căn 20=2 nhânnhân căn 5 (cm)
A B C N M
a, Xét t/g AMB và t/g CMN có:
AM=CM(gt)
MB=MN(gt)
góc AMB=góc CMN (đối đỉnh)
=> t/g AMB=t/g CMN (c,g.c)
=> góc MAB = góc MCN = 90 độ (2 góc t/ứ) ; AB = CN (2 cạnh t/ứ)
=> CN _|_ AC
b, Xét t/g AMN và t/g CMB có:
AM=CM(gt)
MN=MB(gt)
góc AMN=góc CMB (đối đỉnh)
=> t/g AMN = t/g CMB (c.g.c)
=> AN = BC (2 cạnh t/ứ) ; góc ANM = góc CBM (2 góc t/ứ)
=> AN//BC (vì có 2 góc so le trong bằng nhau)
M B A C N A) Xét tam giác BAM và tam giác NCM ta có
AM = MC (gt)
\(\widehat{CMN}\)= \(\widehat{AMB}\) (hai góc đối đỉnh)
BM=MN (gt)
\(\Rightarrow\)\(\bigtriangleup\)BAM=\(\bigtriangleup\)NCM
\(\Rightarrow\)\(\widehat{BAM}\)=\(\widehat{NCM}\)
mà \(\widehat{BAM}\)=90độ \(\Rightarrow\)\(\widehat{NCM}\)=90độ
B) xét tam giác BAC và tam giác NCA ta có
NC=BA (hai cạnh tương ứng)
ACM=BAC
AC cạnh chung
\(\Rightarrow\)tam giác BAC = tam giác NAC
\(\Rightarrow\)AN=BC (hai cạnh tương ứng)
Vì góc BAC và góc NCA là hai góc so le trong mà lại nhau
\(\Rightarrow\)AN \\ BC
nha